viOMMU:

Efficient IOMMU Emulation

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir and Assaf Schuster

Technion
IBM Research - Haifa

6/17/2011



Introduction

DMA

® DMA (Direct Memory Access)goal:
Access system memory independently of the CPU

4q-—-————— - _ -

“Physicat Address

dq---——"—"—-"—"=-—"=—"=—"=————=-==-=

Physical Address

® Legacy DMA presentsseveral challenges:
e (Cannotbe used nativelyin virtualization
e Lackof memory protection from device accesses
® (x86:)Legacydevices cannotaccessthe entire memory

6/17/2011



Introduction

x86 IOMMU

® |/O Memory Management Unit
(IOMMU): Main Memory

® Indirection level between the
address used for DMA and the Physical Addres

physical address
e Similarto MMU, yet translation is

performed in the device context MMU
e Devices are split to protection /O
domains Virtual Virtual
e Adevice can access memory Address Address
addresses present in its domain /10
: CPU
Device




Introduction

/O Virtualization

e |/Ovirtualization through direct device assignment:
® Guest virtual machine interacts with the I/O device directly
e Unmodified guest OS
® Best performance

e |OMMU is required for direct device-assignment

® Protection is required to isolate guests
(inter-guest protection)

e Invirtualization memory accesses of the guest are redirected
by the hypervisor:
Guest Physical Address > Host Physical Address

e Currently, hypervisors use direct map scheme:
Mapping GPA>HPA in the OMMU

6/17/2011



Introduction
Device-Assignment Shortcomings

e No memory-overcommitment
Memory is the main limiting factor for server
consolidation

e No intra-guest protection
Guest is vulnerable to faulty device-drivers and
malicious I/O devices that are assigned to it

® No redirection of DMA
Guest cannot use legacy 32-bit I/O devices, nested
virtualization or other custom mappings

® These shortcomings will be addressed using
IOMMU emulation

6/17/2011 5



Introduction

6/17/2011

IOMMU Emulation

Use a single physical IOMMU to emulate multiple
IOMMUs (for multiple guests)

Thel/O device is still directly assigned to the guest
First evaluated x86 IOMMU emulation

The focus of this work is performing IOMMU
emulation efficiently



Emulation

IOMMU Emulation Flow

Guest Domain Emulation Domain System Domain
(Hypervisor)

2. Allocate IOVA

Mapping Layer

4. I0TLANvd. IOMMU
ofIoVA Emulation

11. Translate
IOVA

6. Pin pages

12. HPA Access

8.10TLBInvd.

1. Request IOVA
for GPA

I/O Device 9. Transaction to IOVA

Driver e
6/17/2C v



Emulation

IOMMU Emulation Uses

e Memory-overcommitment
Pin/unpin during map/unmap of I/O buffers

® [ntra-guest protection & DMA redirection
Physical IOMMU is programmed according to emulated

® Inter-guest protection is not compromised

A page is pinned to physical memory the entire time it is
mapped in the physical OMMU

6/17/2011



Emulation

IOMMU Emulation Enhancements

e Each mapping change results in VM-exit
e Expensive operation (direct cost and indirect cost)
e Diminishes the advantages of device-assignment

e Map and unmap in the IOMMU are lengthy and frequent
operations

e Require allocation of IOVA, MMIO transactions, etc.
e Evenin native-mode can reduce throughput by 57%

e Our solutions:
e Sidecoreemulation
e |OMMU mapping-layer enhancements

6/17/2011 9 Q 9

OPTIMIST PESSIMIST REALIST



Emulation

Sidecore Emulation

® Additional core (sidecore) can be used to avoid
VM-transitions through paravirtualization
[Kumar'oy, Liv’og]

e Similarly, sidecore emulation can be performed

Emulate

Emulated Sidecore
Registers _ (VMM)

& :



Emulation

Sidecore Emulation

® Required device properties:

® Synchronous register write protocol

® Asingle register holds only read-only or write fields
® |ooseresponse time requirements
o

Explicit update of memory-resident data structures

® x386 IOMMU:

® Intel VT-d has these properties
e AMD IOMMU does not

6/17/2011

11



Emulation

Mapping Optimizations

® Revised mapping layers are usable and efficient in
native-mode

e |OTLB invalidation scheme
e |OTLB invalidation is an expensive operation
e Linuxalready coalesces and defers invalidations
® The paper discusses asynchronous invalidations

e Mappings reuse

6/17/2011

12



Emulation

Mappings Reuse

e Common IOVA allocation method

® Single-use — Mapping of I/O virtual address for each given I/O
buffer physical address

e Mappings Reuse (Existing):
I/O virtual page 1

I/O virtual page 2

® Shared - If there is an existing mapping of physical, use it
[Willmann’o8]

® Persistent, On-demand — Never unmap or defer unmappings
until a quota of stale mappings is reached [Yassour 10]

Physical page

6/17/2011 13



6/17/2011

Emulation

Optimistic Teardown

Optimistic teardown is a mappings reuse scheme

Deferring unmappings until a quota of stale mappings
is reached or time-limit elapses

Useful since DMA accesses demonstrate both
temporal and spatial locality

Since stale mappings are always reclaimed, it delivers
better protection than persistent

Protection relaxation impact is similar to that of
deferring IOTLB invalidations (Linux default)

14



Evaluation

Evaluation Environment

6/17/2011

Hardware

e IntelVT-d

® |BMx3550Mz2server

® |IntelXeon X5570 CPUs running at 2.93GHz
e Emulex10Gbps NIC

Hypervisor

® Linux2.6.35

e KVM-Kernel-based Virtualization Machine
® Asingle-core guest shown

Benchmarks

e Microbenchmarks: NetPerf TCP Stream and UDP-RR (Latency)
e Macrobenchmarks: Apache and MySQL

e Thefollowing benchmarks use a single core

15



Evaluation

Map/Unmap Duration

Baremetal 2316 4593 6909
Trap& Emulate 30645 4324 34969
Sidecore 7321 1904 9225

Average breakdown of (un)mapping a singlkege usinghe strict invalidation scheme

® Sidecore emulation is over 3 times faster than
trap & emulate

® Logicpart of the code is performed faster in
emulation!

6/17/2011 16



Evaluation

TCP Throughput

Setting Secure Relaxed Optimistic
(No IOTLB (Linux Default; | (Patched; OTLB
Batching) IOTLB Batching)| Batching)
Baremetal 43% 91% 100%
Trap & Emulate 10% 11% 82%
Sidecore 30% 49% 100%

Measuring theNetperf TCP throughput relatively to the maximum attainable (9.3Gbps)

e Optimistic teardown over 7 times faster than relaxed in guest

e Sidecorebusyat most 33% of the time

6/17/2011 17



Evaluation

Apache

Setting Secure Relaxed Optimistic
(No IOTLB (Linux Default; | (Patched;OTLB
Batching) IOTLB Batching)| Batching)
Baremetal 84% 92% 94%
Trap & Emulate 38% 39% 56%
Sidecore 61% 63% 66%

Measuring Apachthroughput (25 concurrent requestdhe baselindor
normalization is 6828 requests per second

e Maximum attainable throughput in guest — 67%

6/17/2011

18



Conclusions

Conclusions

19



