Virtual CPU Validation

Nadav Amit Dan Tsafrir'

fTechnion — Israel Institute of Technology
{namit, dan, assaf} @cs.technion.ac.il

Abstract

Testing the hypervisor is important for ensuring the correct
operation and security of systems, but it is a hard and challeng-
ing task. We observe, however, that the challenge is similar in
many respects to that of testing real CPUs. We thus propose
to apply the testing environment of CPU vendors to hyper-
visors. We demonstrate the advantages of our proposal by
adapting Intel’s testing facility to the Linux KVM hypervi-
sor. We uncover and fix 117 bugs, six of which are security
vulnerabilities. We further find four flaws in Intel virtualiza-
tion technology, causing a disparity between the observable
behavior of code running on virtual and bare-metal servers.

1.

Since hardware-assisted virtualization was introduced to com-
modity x86 servers ten years ago, it has become the common
practice for server deployment [7]. Today, about 75% of x86
server workloads run in virtual machines (VMs) [13]. Virtual-
ization enables the consolidation of multiple VMs on a single
server, thereby reducing hardware and operation costs [14].
Virtualization promises to reduce these costs without sacrific-
ing robustness and security. We contend, however, that this
promise is not fulfilled in practice, because hypervisors—the
software layers that run VMs—are bug-prone. Hypervisor
bugs can cause an operating system (OS) that runs within a
VM to act incorrectly, crash, or become vulnerable to security
exploits [18].

Hypervisor bugs are software bugs, but the damage they
cause is similar to that of hardware bugs. Since hypervisors
virtualize the hardware of VMs, their bugs cause the VMs to
experience that the underlying hardware violates its specifi-
cation. Patching hypervisor bugs is much easier than fixing
the hardware, yet doing so may induce VM downtime and de-
ter cloud customers, as indeed experienced by leading cloud
providers [24, 71].

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SOSP’15, October 4-7, 2015, Monterey, CA.

Copyright © 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Assaf Schuster!

311

Ahmad Ayoub® Eran Shlomo®

®Intel Corporation
{ahmad.ayoub, eran.shlomo} @intel.com

Several studies have addressed hypervisor bugs, but the
proposed solutions are still inadequate. Existing formal ver-
ification techniques of hypervisors [3] are not full-fledged,
limited by the lack of formal hardware specifications [20]
and the inability to validate important virtualization features
such as interrupts. Code fuzzing approaches have been lim-
ited to testing instructions, suffer from a high rate of false-
positives, and in general have not been used to thoroughly
test hypervisors [42-44]. Avoiding hypervisor bugs is possi-
ble in principle by exposing to VMs a paravirtual hardware
interface that is simpler and more easily verifiable than actual
hardware [37]. But such an interface seems inapplicable for
virtual CPUs (VCPUys), as it requires intrusive modifications
to VM OSes.

Our work is based on the insight that hypervisor bugs
resemble real hardware bugs in many cases, as they are trig-
gered similarly and have similar consequences. We thus hy-
pothesize that hardware validation tools would efficiently
detect hypervisor bugs. We aspire to validate the most compli-
cated virtual hardware component—the virtual CPU (VCPU).

We focus on x86 CPU virtualization, which requires hosts
to be able to emulate multiple VCPU subsystems, notably
(and perhaps counterintuitively) most x86 instructions. This
requirement—Ilike our proposed approach—holds regard-
less of whether hosting is software based [39], hardware
assisted [35], and/or includes a dynamic binary translation
component [1, 8].

We adapt Intel’s tools for validating physical x86 CPUs
[60] to test the KVM hypervisor [36], which is integrated in
Linux and is used by cloud providers such as Google [28]. We
find that the adaptation effort is reasonably low and that the
result preserves the appealing features of the original tools:
high coverage, reproducibility, and ease of debugging.

We use our testing infrastructure to study the number,
severity, and cause of hypervisor bugs. We uncover 117 con-
firmed bugs that make VCPUs violate the CPU specifications.
We fix most of the bugs—those that can be fixed—and com-
mit the corresponding patches to KVM. We find that the
severity of the majority of the bugs is moderate, but that a few
(5%) introduce serious security vulnerabilities to the VMs or
negatively affect their stability; for example, one bug existed
in KVM for nearly five years, reportedly causing sporadic
VM freezing [62]. We further find that most bugs (85%) are
caused by implementors failing to strictly follow available

CPU specifications, but that a few of these can nevertheless
be attributed to missing or wrong documentation. Finally,
we find four cases in which the CPU architecture is missing
features, causing a disparity between the observable behavior
of CPUs and VCPUs that cannot be fixed by software.

2. Virtualization Bugs

The hypervisor, which runs VMs, has the task of providing
them with a virtual environment that behaves like real hard-
ware. Yet building a fully-functional and bug-free hypervisor
remains an arduous task despite CPU hardware assistance. To
date, bug reports are continually being filed for the most popu-
lar hypervisors, and many of the reported bugs have existed in
the code for a long time. Such bugs often cause the VM to fail
(e.g., [11, 50, 51, 72]), or introduce security vulnerabilities
(e.g., [18, 55, 71]).

CPU virtualization is probably the most important and
difficult feature to implement correctly in hypervisors, as
CPU architectures tend to be highly complicated. RISC
CPUs are hard to virtualize [22], and even harder in the
x86 architecture, whose instruction set consists of over 800
instructions, and which supports a variety of debug and
performance monitoring facilities. To virtualize the CPU,
the hypervisor traps and emulates dozens of types of events,
and saves, restores and manipulates a VCPU state of over 100
registers.

CPU virtualization bugs can do a lot more harm than
virtualization bugs in other hardware devices. While OSes
are built to be robust and handle I/O device failures, they often
cannot recover if the CPU, or VCPU in the case of VMs, does
not conform to the specifications. Techniques for avoiding
virtual device bugs, such as using a verifiable simplified
paravirtual device [46], or disabling emulated devices after
boot [52], are mostly inapplicable for CPU virtualization,
as they require intrusive modification of VM OSes. Unlike
device virtualization, CPU virtualization requires the use of
privileged instructions that can only be executed in the kernel
space. As a result, CPU virtualization bugs are more likely
than others to become security vulnerabilities.

Uncovering hypervisor bugs—of which there are many—
is a tedious job. Indeed, some bugs can easily be detected
when a new OS or device driver is deployed (e.g., [50, 51,
72]), yet others are hard to reproduce (e.g., [67, 68]) or might
even be ignored due to reproducibility difficulties (e.g., [34,
56]). The difficulty in validating hypervisors prevents new
features from being employed in production systems. The
most blatant example is nested virtualization, in which a
hypervisor runs within a VM [9]. To this day this feature
is still considered experimental [73], is unsupported [45], and
suffers from a large number of bugs [66], despite the fact that
it was introduced several years ago.

One of the greatest threats of hypervisor bugs is that they
jeopardize VM security and isolation, which are actually the
primary advantages of hardware virtualization over operating

312

system-level virtualization [57]. In the worst case scenario,
hypervisor bugs may allow code which runs within a VM
to launch a privilege escalation attack on the hypervisor,
and thereby run kernel-level operations on the virtualization
host ([25, 29]).

Other attacks are also dangerous, especially in cloud
environments, where VMs of different organizations are co-
located, and an attacker can instantiate a VM that would be
co-resident with a certain target VM [58]. Consequently, a
malicious cloud user may be able to exploit hypervisor bugs
to steal data from another VM, or to launch a denial of service
(DoS) attack on a certain VM by crashing the host. In fact,
even DoS attacks not directed at a certain VM may have other
extreme effects. To achieve high-availability, virtualization
platforms are usually configured to restart crashing VMs on
another physical machine in the same resource pool [19, 71].
As aresult, a single malicious VM that deploys a DoS attack
can exhaust significant physical resources.

Even when security vulnerabilities are found before they
are exploited, patching them in a timely manner without incur-
ring VM downtime is not an easy task. In cloud environments,
patching can introduce non-trivial bandwidth requirements,
as it often requires that the running VMs be migrated to an-
other physical server before the patch is applied [63]. Using
direct attached storage for the VMs increases the bandwidth
requirement even further and can render massive live migra-
tion impossible [23].

The damage caused by virtualization bugs may be best
exemplified by the recent Xen security advisory, XSA-108,
which reported a bug in the emulation of x2APIC machine
state registers (MSRs) [18]. While real x86 CPUs hold up
to 256 x2APIC MSRs, Xen erroneously emulated 1024, and
served excessive MSR read operations from memory beyond
the memory page that was used for emulating these MSRs. As
aresult, a malicious VM could issue MSR read operations that
would either crash the entire host or read data from other VMs
or the hypervisor. Although there were no reports of actual
exploits of this bug, patching it required cloud vendors to
invest substantial IT resources. More importantly, since many
of the vendors could not perform live migration, patching was
performed over a week, presumably because the patches were
applied when the VMs were shut down. Eventually, cloud
vendors, including Amazon Web Services, Rackspace and
IBM SoftLayer, still needed to reboot many of the servers
whose VMs were not shut down voluntarily. Amazon reported
that 10% of the VMs were rebooted, and a survey revealed
that some cloud users experienced a non-negligible downtime:
over 18% of SoftLayer users reported a downtime of over an
hour. Consequently, 29% of surveyed SoftLayer customers
claimed to now be considering other providers [69].

3.

Intel VT presents an instruction set that enables a hypervisor
to run VCPUs of a VM in a less privileged mode called “guest

Intel Virtualization Technology

mode.” Code that runs in this mode can run both in kernel
mode and in user mode, making it possible to run an entire OS
within a VM. The VCPUs are controlled by the hypervisor,
which runs in “root mode,” and can trap VCPU sensitive
instructions—instructions which may affect the entire system
(e.g., writes to control registers)—as well as other sensitive
events (e.g., interrupts). When such an event occurs, the CPU
performs a “VM-exit,” switching the CPU to “root mode”
and running the hypervisor code. The hypervisor can then
inspect the cause for the VM-exit and handle it, for instance
by emulating the trapped instruction. Once the VM-exit is
handled, the hypervisor can resume the execution of the VM
in guest-mode by performing “VM-entry.” The hypervisor
configures which of the sensitive events should be trapped in
a VM control structure (VMCS).

In addition to trapping sensitive events, the hypervisor
can control how VM code is executed, without triggering
a VM-exit. For example, Intel VT supports “second level
address translation” (SLAT), from guest physical memory
to host physical memory. The hypervisor sets SLAT paging
structures according to the physical memory it allocated for
the VM. When a CPU that runs in guest-mode issues memory
accesses, the address goes through two levels of translation,
first from guest virtual to guest physical, and then from guest
physical to host physical.

When the CPU performs VM-entry and exit, it loads/stores
certain portions of the VCPU state from/to the VMCS. How-
ever, part of the VCPU state, such as general purpose and
floating-point unit (FPU) registers, are not kept in the VMCS.
The architecture leaves it to the hypervisor to save and restore
this state. To reduce exit handling time, hypervisors may de-
cide not to save and restore some registers on every exit, if
these registers have not been changed.

Sometimes the hypervisor also needs to handle certain
infrequent events that are not virtualized by hardware, such
as hardware “task-switch” or configuration of the interrupt
controller (I/O APIC). Hypervisors can also report that the
VCPU supports “nested virtualization” and emulate the exe-
cution of VT instructions in a VM, making it possible to run
a hypervisor within the VM.

4. Testing

Our system validates that the behavior of the virtual CPU
conforms with the specification of the physical CPU. It
is therefore based on the methodology and tools used for
physical CPU validation [60]. We next describe the existing
Intel testing infrastructure for physical CPUs that we use in
this study (§4.1) and the manner by which we adapt it to apply
to virtual CPUs (§4.2).

4.1 Testing Physical CPUs

The physical CPU validation system consists of test genera-
tion, execution, and analysis, as depicted in Figure 1.

313

generation execution analysis

debugger
tracer
(logic analyzer)

mem-+regs
dump

biasing

test

generator loader

failure
collector

_arch.
simulator

Figure 1. Physical CPU validation system. Rectangles denote
computing entities. Ellipses denote files.

Generation Intel employs several test schemes to achieve
good coverage. Some tests are focused on validating spe-
cific behaviors, like the CPU reset sequence; such tests are
typically fixed or include a minor, carefully controlled ran-
dom component. Most tests, however, are constructed via
a random code generator, which utilizes code fuzzing and
differential testing techniques. The generator creates compre-
hensive tests that exercise all the CPU subsystems. Unlike
other code fuzzing tools, the generator is tightly coupled with
an exact architectural simulator, used as a reference system.

Both generator and simulator use a system-under-test
(SUT) configuration file that describes the SUT, specifying
the physical memory map, the number of CPUs and their
generation, the supported MSRs and their initial values, the
supported instruction set extensions, and so on. The generator
additionally uses a bias file that defines such parameters as
the probability to generate individual instructions.

In Intel, there is no formal model that fully defines CPU
behavior. Instead, an architectural simulator—reflecting the
public and internal CPU specifications—is used as the ref-
erence system. The simulator is functional and unaware of
the microarchitecture. As it is not cycle accurate, it operates
at a reasonable speed and is thus usable for testing. By sim-
ulating execution of tests, the simulator provides their final,
correct outcome for reference. The generator utilizes these
outcomes to create self-checking tests. Each test is a mem-
ory image that is later loaded onto the (OS-less) SUT. The
execution outcome then indicates whether the test passed or
failed depending on whether it matched or mismatched the
reference.

A test consists of three parts. The first is short initializa-
tion code that sets the basic environment, i.e., descriptor and
page tables, model-specific registers (MSRs), and so forth;
as this initial state is random, it helps to increase converge.
The second part contains N random instructions that com-
ply with the bias file. (Long random instruction sequences
make debugging harder, whereas short sequences make ini-
tialization dominate the runtime; the test system typically

uses IV = 4096, striking a balance between the two.) The
random sequences include every possible valid/invalid in-
struction, collectively exercising nearly all the architectural
features. The third part of the test runs upon completion and
reports the results.

Unlike typical fuzzing mechanisms, the generator is inti-
mately aware of the semantics of the instruction set: (1) it
employs instruction pre-handlers to, e.g., fulfill or purposely
violate non-trivial preconditions (for instance, read MSR op-
erations load the value of the ECX register, so an associated
pre-handler can arrange things such that ECX would hold
a valid MSR index if this is not the case already); (2) it
employs instruction post-handlers to, e.g., eliminate nonde-
terminism (for instance, read timestamp counter instructions
yield unknown results at generation time, so a handler can
add subsequent instructions to overwrite these values); (3) it
stresses bug-prone mechanisms such as memory aliasing and
wraparound; (4) it ensures that random hardware breakpoints
are meaningful by backpatching breakpoint-setting instruc-
tions to point to valid target instructions; (5) it prevents races
between cores by tracking every byte used in the test (with
the simulator’s help); and (6) it avoids deadlocks and ensures
completion by generating loops and branches in a carefully
controlled way.

One feature that greatly enhances the generator’s semantic
awareness is that it works in tandem with the simulator on a
per-instruction basis, simulating each instruction immediately
after generation. It is thus capable of, for example, avoiding
a host of undesirable situations, such as unintended excep-
tions that it was unable to foresee. The simulator allows the
generator to roll back one instruction and try again.

Randomizing instructions individually as described above
is highly effective. But some scenarios are too complex to
be tested in this way. For example, inter-processor interrupts
(IPIs) are hard to test, as they are inherently asynchronous and
so the generator and simulator cannot tell which instructions
will get hit by IPIs [10]. The generator therefore employs
test “templates,” which encode a recipe instructing it how to
test. The IPIs template encoding includes: creating a fixed
code chunk that synchronizes between the cores; generating
a chunk of random code on the IPI target cores; and then
emitting instructions that block the cores until the expected
interrupts are received. Other templates are used, for example,
when validating timer interrupts and cross-modifying code.

Execution Test generation is compute intensive and is sig-
nificantly longer than test execution. Generation is therefore
performed by multiple machines, outputting memory images
that constitute self-checking tests. When a test is ready, it
is immediately communicated via the network to the loader,
whose role is to dispatch the test on the SUT, to retrieve indi-
cation whether the test has passed, and to forward the test to
bug analysis if it has failed.

The loader and SUT are two distinct physical machines.
The loader is connected to the SUT and controls its power

314

switch. The SUT is equipped with a test device—denoted
here as “Ldev’—which is likewise connected to the loader.
Ldev gets the image from the loader, loads it into the SUT’s
memory, and generates an INIT event that starts the SUT
working, running the newly arriving image. Ldev services the
memory-mapped I/O (MMIO) and programmed I/O (PIO)
issued by tests, such that MMIO/PIO read operations simply
return the values previously written to the corresponding I/O
addresses. Ldev is also used to generate external interrupts
when their functionality is tested.

A running test indicates that it is finished by issuing an
I/O write operation to Ldev via a predetermined I/O address.
Ldev forwards the information to the loader, which in turn
checks whether the test passed or failed. Sometimes, however,
test failure causes the SUT to hang instead of exiting cleanly.
The loader therefore sets a timer to bound the test execution
time, and it proactively fails the test if the timer expires.

Analysis As noted, at the end of the execution, the SUT’s
state is compared against the reference outcome generated
by the architectural simulator, which is encoded in the test.
(The generator optimizes this procedure, using the simulator
to identify the memory regions and registers that are affected
by the test, such that only they will be compared.) Tests,
however, may detect divergent executions sooner than their
completion time, attempting to ease debugging and facilitate
the root cause analysis. To this end, the generator incorpo-
rates within the test occasional partial comparisons of rele-
vant memory locations and registers to their corresponding
simulator-generated values. For example, tested exception
handlers compare the SUT’s registers and exception error
code with the correct values output by the simulator.

Whether in the middle of the execution or at its end, a
test fails when divergence is detected. The test then encodes
in a suitable memory-resident structure information that
accurately characterizes the divergence, to be retrieved later
on by analysis tools seeking to identify the exact point where
the divergence occurred. For instance, if a register value
was found to be different than expected during an exception
handler, the test records the register number, the actual and
expected values, the bit-mask of the compared bits (not all bits
are necessarily defined), and the faulting instruction pointer.
Likewise, before synchronously waiting for interrupts, which
might never arrive and thereby cause the test to hang, the
test saves checkpoints in memory indicating the cause of the
potential failure in case the test is timed out by the loader.
The loader then dumps this memory structure into a file that
is handed to the failure collector for later use.

When debugging a failing test, users utilize a remote x86
debugger that controls the SUT through an in-target probe
(ITP) device [70] that the SUT houses. The ITP allows the
debugger to, e.g., examine the internal CPU state, set break-
points, and execute in single-step mode. Sometimes, however,
a debugger affects the outcome of the test and interferes with
the analysis. The system therefore supports non-intrusive

tracing using logic analyzers that are connected to CPU pins,
interconnects, or buses within the SUT. To further assist de-
bugging, the architectural simulator can generate a detailed
trace of the reference test execution, including, for example,
all memory references and exception causes.

4.2 Testing Virtual CPUs

When adapting the physical CPU (PCPU) validation system
to apply to VCPUs, we use the test generation subsystem
unchanged. This approach is aligned with our insight that
VCPUs should behave identically to PCPUs when subjected
to the same tests. Thus, our adaptation efforts focus on
enabling the execution and analysis of tests on VCPUs, as
described next. (We report the analysis results in §5.)

System We test the Linux KVM/QEMU hypervisor (Linux
versions 3.14-3.18 and QEMU version 2.1.0). QEMU is
a regular user-level process that encapsulates a guest VM,
such that each guest VCPU is in fact a thread within the
QEMU process. KVM is a kernel module. KVM/QEMU
employs hardware-assisted virtualization, which means that
the VM code typically runs natively on the PCPU. Some VM
operations, however, trap to, and are served by KVM/QEMU.
For example, guest I/O requests directed at certain I/O devices
are served by QEMU, which uses standard system calls to
satisfy the requests, thereby emulating the functionality of
these devices. In this setup, the SUT is the hypervisor.

We assign the role of the test loader to a Linux process that
we implement, called “Vloader.” Upon initialization, Vloader
starts a QEMU instance that matches the SUT configura-
tion file. The corresponding VM is diskless and has no OS.
Vloader waits for the VM to boot (only BIOS), and then it
starts getting requests from test generators as in the original
PCPU validation system. Upon receiving a test memory im-
age, Vloader communicates with the running QEMU instance
via the QEMU Machine Protocol (QMP) [54], instructing it
to: (1) suspend its preexisting OS-less VM, (2) load onto the
VM the newly received memory image, and (3) send to the
VM an INIT signal. Out of these three actions, QEMU only
supports the first. We therefore implement the latter two.

Similarly to the original system, Vloader is also responsi-
ble for setting a timer and failing a test if it hangs, by commu-
nicating with QEMU. This action, however, can be accom-
plished using standard QMP operations.

Recall that the PCPU SUT is equipped with Ldev, a test
device that handles I/O operations, such as the write operation
that indicates that a test ended and whether it passed or failed.
We add similar functionality in QEMU, by coupling our
VM with a newly implemented emulated I/O device that has
equivalent I/O semantics. We only implement PIO support,
which is required for allowing tests to communicate their
outcome.

Upon completion, the self-checking test compares the
relevant memory regions to the reference produced by the
architectural simulator. In the PCPU validation system, this

315

comparison is performed (accelerated) using special hardware
devices. But these devices are unaware of the additional
memory indirection of virtualization in our VCPU validation
system, so we modify QEMU to compare in software. If it
discovers a difference, it dumps the memory-resident debug
regions into a file. After the debug information is safely stored
for later analysis, Vloader disposes of the running QEMU
instance, spawning a new instance so as to prevent the failing
test residues from causing additional failures.

Debug Support Being able to debug a failed test is impor-
tant in both PCPU and VCPU validation systems—in the
former, debugging uncovers PCPU bugs, whereas in the latter
it uncovers hypervisor bugs. KVM allows for VM debugging
with gdb. It supports single-stepping and hardware break-
points by respectively manipulating the EFLAGS trap flag
and the debug registers (DRs) of the VM. This approach
is useful for debugging OSes of VMs. But it is unsuitable
for our purposes, as it allows VMs to interfere with our de-
bugging and our tests. For example, if a single-stepped VM
invokes PUSHF, then the manipulated EFLAGS value be-
comes visible to the VM, which might affect the test’s result.
Likewise, when a VCPU encounters an exception, EFLAGS
may change, thereby disabling single-stepping.

We overcome the problems associated with single-stepping
by modifying KVM to utilize the Monitor Trap Flag (MTF)
of Intel VT. MTF allows us to single-step VMs without
changing their observable state or permitting them to occa-
sionally disable single-stepping. We additionally use MTF
to overcome the problems associated with breakpoints by
modifying KVM to refrain from using the DRs of the VM
altogether; instead, we opt for iteratively single-stepping the
VM until reaching the instruction pointer associated with
the breakpoint. This approach incurs a slowdown. But the
slowdown is tolerable because tests consist of only a few
thousands of instructions, and so the approach suffices.

Emulation Mode There are circumstances where hyper-
visors are required to trap and emulate VM instructions in
software, even if some of these instructions are non-privileged
and could have otherwise been executed directly on the PCPU
(§5.1). Malicious guests can purposely create these circum-
stances and force emulation of arbitrary instructions, so it is
important to get the emulation right. Our analysis, however,
indicates that the relevant hypervisor subsystem is especially
bug-prone due to the complexities involved in emulating x86
instructions while supporting multiple addressing modes, ex-
ecution modes, operand sizes, etc. Consequently, to allow for
thorough testing of this subsystem, we implement a KVM
mode that exercises this subsystem whenever possible, al-
ways preferring to emulate instructions whose emulation is
supported instead of running them natively on the PCPU.
Under this mode, if emulation of an instruction is unsup-
ported, we use MTF to resume the VM’s native execution
for one instruction only (single-stepping). Additionally, since
KVM does not know how to emulate interrupt and exception

events, we inject the interrupt/exception to the VM when
it fires so as to make the VM aware, and then we likewise
resume the VM for one instruction using MTF.

Nondeterminism The PCPU SUT is an OS-less, bare-metal
machine dedicated to running tests. Conversely, the VCPU
SUT operates within a general-purpose host environment,
which runs services as kernel threads and allows uncontrolled
interrupts. Such asynchronous activity might interfere with
timing considerations of, e.g., IPI tests. We therefore curb
asynchrony by following well-known practices to reduce OS
jitter [47], including: off-lining and on-lining test cores to
force workers away from them; setting interrupt affinity to
core 0 and never using it for tests; utilizing a tick-less kernel;
and pinning different VCPU threads to different PCPUs.

QEMU allocates memory for VMs on demand, and KVM
populates extended page tables (EPT) on-demand [12, 31].
The hypervisor is thus a source of nondeterminism, as mem-
ory allocation in one test affects the execution of the subse-
quent test because the corresponding allocated/mapped pages
persist between executions. We resolve this problem by in-
structing QEMU to always preallocate VM memory and by
modifying KVM to always premap VM memory in the EPT.

Jitter and asynchrony did not affect our analysis, namely,
all failing tests we found were reproducible.

Virtual 1/0 Paths Emulated 1/0 devices implement inter-
faces identical to those of physical devices, interacting with
VMs in four ways: PIO, MMIO, DMA, and interrupts. The
testing of I/O devices is out of scope. Still, CPU instructions
and subsystems are in fact used to interact with I/O devices,
and so execution correctness partially relies on certain hyper-
visor code paths. We contend that these paths are in scope,
since they are generic and independent of specific devices.

Suppose, for example, that an instruction J traps since it
involves MMIO. KVM decodes J, stages its operands, and
learns that at least one of them resides in MMIO. If this
operand should be obtained via input, KVM interacts with
the device (possibly invoking QEMU), and it reissues .J after
the input becomes available. Among all of these activities,
only the device interaction is specific; J’s decoding, operand
staging, and reissuing (among others) are generic.

The above corresponds to emulated I/O devices. Other
generic hypervisor code paths are indirectly exercised with
assigned I/O devices—instances of a physical devices that
the hypervisor hands to VMs for their exclusive use, largely
removing itself form the data path to boost performance. With
this I/O model, relevant generic code paths include [IOMMU
programming and interrupt remapping and posting [32].

We did not test device assignment code paths, nor did we
emulate device DM As and external interrupts. For MMIO, we
tested the initial part, namely, the activity before the device-
specific interaction. The only I/O emulation mechanism we
fully tested—notably, the reissuing of instructions that occurs
after the device-specific interaction—is PIO.

316

ID description added
K1 no #AC exceptions on emulated instructions

K2 missing instructions emulation

K3 atomic ops may be emulated as non-atomic

K4 no emulation of port and data breakpoints

K5 multiple nested virtualization bugs

K6 missing emulation of machine state registers v
K7 no support for system management mode

K8 no support for MONITOR and MWAIT v
K9 no support for performance monitor unit v3 v
K10 different number of MTRRs than real CPUs v

Table 1. Missing CPU virtualization support in KVM. We imple-
mented K6,K8—K10 and disabled the use of the rest.

Bootstrapping The effort to adapt the PCPU testing infras-
tructure along with finding bugs, fixing them, reporting them,
and getting the associated patches committed took roughly
a year. Running the first N = 0 test (where the number of
random instructions comprising the middle part of the test is
zero; see §4.1) took about two weeks. The test unsurprisingly
failed, and making it pass took another month. Passing the
first NV = 100 test took approximately an additional month.

A main difficulty we faced while bootstrapping the sys-
tem was that hypervisors may not virtualize certain CPU
features, perhaps because they are viewed by the developers
as unnecessary or as too hard to implement. In some cases,
such missing support violates the CPU specification (entries
K1-K7 in Table 1), whereas in other cases it conforms with
the specifications since the (V)CPU is allowed to declare
the missing support via capability registers (K8—K10). Re-
gardless of whether the missing support is legitimate, our test
generator relies on these features and fails to run if they are
unsupported. We therefore implement the missing features in
KVM if they are impactful, or entirely prevent their use with
the bias file (§4.1) if they are not.

5. Results

We used the VCPU validation tools to test the KVM hy-
pervisor. Our tests were executed on Intel’s Skylake Client
CPU. We ran over 100k tests, each containing 4096 random
instructions per VCPU.

We now describe the bugs we encountered. We divide the
bugs into different domains that correspond to the affected
CPU features. For each domain we describe the architectural
feature, the associated virtualization features, the bugs, and
their potential impact. We then analyze the causes of the bugs
and discuss the lessons we learned. Table 3 lists the bugs we
found, a short description of each bug, and the patch number
of its fix. We denote each bug as Bx as in Table 3.

5.1 Instruction Emulator

Ideally, the hypervisor would only need to emulate a small
subset of the instruction set. However, on x86 architecture,

the hypervisor may be required to emulate most instructions,
for four reasons [6]:

Shadow Page Tables Prior to Nehalem micro-architecture,
Intel CPUs did not support second level address transla-
tion. Hypervisors therefore employed page tables that held
the translations of guest virtual memory addresses to host
physical addresses. To efficiently synchronize them with the
“shadow page tables” that the VCPU controlled, the hypervi-
sor tracked changes of the shadow page tables, by trapping
and emulating VM write accesses to them.

Real-Mode Prior to Westmere micro-architecture, Intel
CPUs set restrictions on the guest-mode state, which pre-
vented running real-mode code in guest-mode. Since CPUs
boot in real-mode, hypervisors emulated the VCPU execution
until it could run natively in guest-mode [16].

Port 1/0 (PI0O) and Memory Mapped I/0 (MMIO) Instruc-
tions that perform I/O operations using an emulated device
are trapped by the hypervisor before they are executed. The
hypervisor decodes and performs partial emulation of the in-
struction to recognize the accessed I/O space address. Using
this information, the hypervisor then emulates the I/O device
and completes the emulation of the trapped instruction. To
avoid the overhead that VM-entries and exits incur, some hy-
pervisors emulate entire code blocks that frequently perform
I/O operations [1]. Note that the use of paravirtual devices
does not obviate the need to emulate certain I/O devices, for
example the programmable interval timer (PIT).

Vendor-Specific Instructions To allow migration of run-
ning VMs, hypervisors expose the “lowest common denomi-
nator” of physical server CPU features. In other words, hy-
pervisors avoid exposing features not supported by all hosts
that might run the VM. Hence, minor disparities between
AMD and Intel CPUs may prevent the VM from using very
useful instructions whose absence would degrade the VM’s
performance. To circumvent this limitation, the KVM hyper-
visor reports that the VCPU supports these instructions. KVM
then traps illegal instruction exceptions that these instructions
trigger and emulates them.

Since the x86 instruction set is relatively big, the instruction
emulator is bug-prone. On modern CPUs, only a subset of the
instructions would be emulated, yet as we show later (§6), the
emulator can be tricked into emulating any instruction. We
therefore use the emulator stress mode that tests the emulation
of all instructions (§4.2). As we expected, the instruction
emulator incorporates many bugs.

Some of these bugs are a serious threat as they pose se-
curity vulnerabilities. We discuss these vulnerabilities in §6.
Other bugs may cause VM workloads to fail. For example,
one of the bugs caused the decoder to miscalculate the in-
struction length when it was crossing a page boundary (B26).
As aresult, the emulator could mistakenly consider legal in-
structions as illegal, and deliver an exception. Although this

317

bug was not previously reported, we believe it is likely to be
experienced by KVM users.

During our tests, we encountered several bugs in the em-
ulation of instructions commonly used for MMIO opera-
tions. The CPU flags could be updated incorrectly during
the emulation of string scan and compare instructions (B37),
compare-exchange instructions (B11), or when an instruction
triggers an exception (B34). The emulation of some instruc-
tions used the wrong memory address (B7), and others the
wrong operand size (B31, B32). Some bugs caused more sub-
tle errors, for example the delivery of the wrong exception
(B25) or the wrong error-code (B21, B52).

Some bugs are unlikely to occur on common VM work-
loads: assemblers might not generate machine code that trig-
gers bugs (B2, B40, B67); OSes avoid invalid operations that
lead to exceptions (B25); and the segmentation mechanism,
whose emulation introduced many bugs, is not used by most
OSes (B13, B14, B24, B25).

The causes for the bugs vary. Several are because of
incorrect emulation of known x86 quirks [2] (B3, B4, B§, B36,
B67, B75) or of lesser-known quirks (B46). Some are related
to known architecture pitfalls such as wraparound (B54, B65).
Some were introduced because of incorrect adaptation of the
emulator to 64-bit (B7, B9, B22) or other new CPU features
(B35). Other bugs, for instance, NULL pointer dereferencing
(B43, B45, B66), or wrong return value (B53), are caused by
coding errors. One bug was caused due to a mistake in the
CPU documentation (B63). Code redundancy caused some
bugs to appear twice (e.g., B18 and B76).

Lessons Learned As we reviewed the bugs, we found that
three of the instruction emulator bugs (B20, B26, B48) are
software regressions, i.e., bugs caused by enhancements or
other bug fixes. Two additional software regressions were
found in other virtualization mechanisms (B89, B102). This
result indicates that hypervisor testing is not a one-time effort,
and should be performed on a regular basis.

Our analysis indicated that disabling the emulation of
vendor-specific instructions could prevent one of the bugs
(B20) and mitigate others (B27, B46, B47, B64). Since this
emulation is necessary only in certain environments, we
suggest it be disabled by default. Since we discovered other
bugs caused by rarely used hypervisor features (§5.2), we
generalize our suggestion: every optional hypervisor feature
should be disabled unless it is explicitly required.

Since over half of the bugs we found are instruction emula-
tor bugs, it appears that hypervisor developers would benefit
from hardware enhancements that would simplify their soft-
ware implementation. While eliminating the need for an in-
struction emulator is complicated due to the complex format
of x86 instructions and the fact that they can access multiple
memory locations, other partial solutions are possible.

For example, Intel VT includes a “decode assist” feature,
which provides information about instructions that trigger
VM-exits, thereby eliminating the need to decode these in-

structions in software. However, this feature does not provide
decode information on most VM-exits, and therefore it cannot
be used by the instruction emulator. We suggest enhancing
the decode assist to provide information about every VM-exit
triggered by a VM instruction and to provide more data about
it, for instance, its operand values. Providing this information
can eliminate hypervisor bugs as well as some of the security
vulnerabilities we present in §6.

5.2 Debug Facilities

Each x86 CPU has four debug registers in which the OS can
set linear addresses of desired breakpoints or watchpoints. A
control debug register is used to activate the breakpoints and
set their type. When the condition of a breakpoint is met, the
processor invokes the debug exception handler and updates
the debug status register to indicate the exception cause.

In our experiments we found eleven bugs in the way KVM
virtualized the debug facilities: mishandling the architectural
“Resume Flag” triggered multiple debug events on a single
breakpoint (B77, B78) or caused breakpoints to be skipped
(B76); transactional memory debug could not be enabled
(B79); execution of the ICEBP instruction did not advance
the instruction pointer (B75; it was fixed by others); and
breakpoints did not correctly update the debug status and
control registers (B80, B82, B83). These bugs can cause VM
debuggers to fail, and since debug exceptions are handled in
OS code, they may even cause the VM OS to panic.

Lessons Learned Discovering bugs in the virtualization
of CPU debug facilities may be surprising, as Intel VT
makes it possible for hypervisors to virtualize debug facilities
correctly without trapping any debug exception and debug
register access. KVM, however, trapped these events to allow
a host level debugger to debug the VM. KVM performs
this debugging by setting hardware breakpoints of the host
debugger in debug registers that the VM does not use. To hide
this manipulation, the hypervisor then traps VM access to the
debug registers and emulates them. When a debug exception
occurs, KVM traps it and determines whether it was triggered
by a breakpoint of the host debugger, or whether it should be
delivered back to the VM. Handling hardware breakpoints in
this manner is obviously bug-prone.

One way to mitigate the impact of such bugs is not to trap
debug register accesses and exceptions when a host debugger
is not used. Indeed, recent KVM changes eliminated many
of these traps. A better way is to enhance the virtualization
architecture to allow the hypervisor to debug VMs without
trapping the VM debug register accesses and exceptions.

Finally, we note that like debug registers, other CPU re-
sources can be used by both the hypervisor and the VM. For
instance, performance counters can be used by the hypervisor
to monitor the VM [15] while the VM OS uses them for its
own purposes. Supporting this use-case requires extensive
software support, and intrusive intervention of the hypervisor
in the VM run. As we experienced, such intervention can

318

result in bugs as well (B111). Hypervisor robustness would
therefore benefit from CPU features that would allow provi-
sioning of all CPU resources without software intervention.

5.3 Local APIC

Each x86 core holds a “local advanced programmable inter-
rupt controller” (LAPIC), which receives external and inter-
nal interrupts (e.g., timer-interrupts), and sends and receives
inter-processor interrupts (IPIs). The LAPIC is a feature-rich
component whose efficient emulation is difficult. New server
CPUs can virtualize some of its behavior in hardware.

In our tests we encountered seven bugs in LAPIC emula-
tion. Some of the bugs we found are rather disturbing as we
believe they occur on common VM workloads.

The most disturbing bug that we found reportedly caused
certain VMs to sporadically freeze. Due to this bug, an
interrupt may not be delivered to a VCPU unless an additional
interrupt is later sent to the same VCPU (B89). This bug
occurs due to improper synchronization in a highly optimized
lock-free code, which leads to a non-trivial race. Fixing
this bug, which existed in KVM code for nearly five years,
resolved a reported issue of occasional freeze of VMs [62].
Due to the complex nature of this bug, and since it occurred
roughly once a month and only on certain systems, substantial
efforts to debug it on real OSes were futile.

Two additional bugs that we found occur when a VM OS
uses the APIC timer “time-stamp counter deadline” operation
mode, similarly to the way Linux uses it. A timer set to this
mode should deliver a single interrupt at a given absolute time.
Yet we found that KVM often injects a spurious interrupt to
the VM after the timer has elapsed and an interrupt has already
been delivered to the VM (B87, B88). Apparently, OSes are
robust enough not to crash despite this spurious interrupt.
Other bugs that we found could lead to spurious or missing
interrupts (B85, B86, B90) or render the APIC useless (B84).

Lessons Learned Debugging the LAPIC was more com-
plicated than other mechanisms, as two of the bugs (B86,
B89) were caused by non-trivial races. Nonetheless, by run-
ning fewer than 1k iterations of these tests, we were able to
recreate the failures and find their root causes in a few hours.

54

The x86 architecture includes model-specific registers (MSRs)
for controlling CPU functions and for state monitoring. MSRs
can be read and written using the privileged RDMSR and
WRMSR instructions. To virtualize MSRs, Intel VT uses
MSR bitmaps that allow the hypervisor to configure which
MSRs can be accessed directly by the VM, and which are
handled by the hypervisor and therefore trigger a VM-exit
when they are accessed.

Our tests—although they were not intended to stress MSR
accesses—found eight bugs in MSR handling. First, writing
invalid values to MSRs or accessing non-existent MSRs
should cause an exception (#GP). We found that KVM did not

Model-Specific Registers

emulate this behavior correctly (B91, B92, B96). In one case
(B92), KVM emulated WRMSR by writing the MSR value to
the real CPU without checking that the value is valid, and
therefore could cause the host kernel to panic.

Second, we found cases where KVM erroneously emu-
lated MSR writes without reflecting MSR values on the real
CPU. As a result, certain features with observable implica-
tions were not enabled or disabled, resulting in wrong VCPU
behavior (B93, B94, B97). Last, we found that invalid WRMSR
instructions in real-mode caused VM-entry to fail, and the
VM to crash (B95), since KVM mistakenly delivered an error-
code for real-mode exceptions.

Lessons Learned Reviewing these bugs, we find they are
all byproducts of the complexity of MSR architecture. Some
MSRs affect the visible architectural behavior of the VM,
whereas others do not. Deducing this information from the
specification is not an easy task. It appears such bugs could
easily have been avoided by documenting this information.

The VM BIOS might actually prevent the occurrence
of some bugs, but it cannot be relied on to always prevent
them. Bugs that occur upon MSR configuration that is only
carried out by the BIOS might never be triggered; by default,
hypervisors power-on VMs with a certain BIOS, which may
not trigger them. However, some hypervisors make it possible
to use a different BIOS or Unified Extensible Firmware
Interface (UEFI) [26], which may trigger these bugs. Running
a nested hypervisor that runs nested VMs with different BIOS
may trigger these bugs as well.

But the VM BIOS can also introduce bugs of its own.
In our research, as we addressed one of the disparities in
the behavior of VCPUs and CPUs (K10), we unintentionally
triggered a bug in the VM BIOS that caused the 32-bit version
of Windows 7 to display the so-called blue screen of death [4].
The fact that we hit a VM BIOS bug suggests that more
thorough VM BIOS testing is required, especially since such
bugs may compromise system security [17].

5.5 Task-Switch

OSes often switch tasks, saving the current task state in mem-
ory and loading that of the next one. To facilitate this in soft-
ware, Intel introduced the hardware “task-switch” mechanism
30 years ago. However, this rather complex mechanism never
gained significant traction, reportedly because it was slow
and not portable. Due to its infrequent use and complexity,
Intel does not support the native execution of task-switch in
guest-mode and AMD’s support lacks important features [59].
As a result, hypervisors are required to emulate task-switch
and cope with its complexity. Despite its unpopularity, task-
switch remains in use in most 32-bit OSes, since it provides
atomic context switching upon serious errors. 32-bit Linux,
for instance, uses task-switch when it encounters a “double-
fault,” which is caused by unexpected exceptions.

In our tests we encountered five bugs in task-switch
emulation. In two cases valid task-switch operations could

319

fail due to incorrect privilege checks (B101, B102). The latter
(B102) was introduced during our research by another KVM
developer, and we therefore believe that it could indeed harm
common workloads. In addition, we found that task-switch
emulation mistakenly saved registers (B100), and erroneously
masked hardware breakpoints (B99, B103).

Lessons Learned Bugs in task-switch emulation are ex-
pected due to its complexity and infrequent use. Nonetheless,
these bugs are harmful since task-switch is used when the OS
encounters an error. In such cases these bugs may prevent the
VM OS from performing graceful shutdown.

5.6 Initialization

x86 CPUs support two initialization events: reset and INIT.
The CPU responds to these events by initializing the CPU
state to a fixed predefined state. The two events are similar
but different as INIT leaves part of the CPU state unchanged.
OSes commonly use INIT IPIs to enable the bootstrap pro-
cessor to wake up the other processors [31].

Intel VT does not virtualize these initialization events and
requires the hypervisor to emulate them. Although our tests
were not intended to test CPU initialization, they revealed
four bugs. As we described in §4.2, each test is invoked by
injecting an INIT event to the VCPUs.

Two bugs were revealed directly by the tests. One caused
pending exceptions and interrupts to be delivered after INIT
(B105). This bug was discovered accidentally, as we initially
ran the tests without restarting the VM after each test failure,
and interrupts from one failing test were received on the
following test, causing it to fail too. The second bug resulted
in unexpected interrupts due to improper initialization of
LAPIC during RESET (B109). This incorrect behavior was
actually a workaround to circumvent an old bug in the VM
BIOS used by QEMU. Although the BIOS bug was resolved
long ago, the workaround was not removed.

Two additional bugs did not cause tests to fail, but were ap-
parent when we examined execution traces during debugging,
as they prevented the hypervisor from changing the bootstrap
processor (B106, B104). The latter bug had additional impli-
cations as it cleared part of the CPU state that should remain
intact during INIT. Motivated by these bugs, we created unit-
tests to test the reset sequence and found that KVM does not
initialize some registers during it (B107, B108).

Lessons Learned Again, we see that the VM BIOS and
the OS initialization code may hide certain bugs. However,
initialization bugs may become apparent when BIOS imple-
mentation or OS code change. The recent development of the
OVMF project, which delivers UEFI support for VMs [26],
revealed additional bugs in the initialization code.

Arguably, hypervisors should use non-buggy BIOSes in-
stead of circumventing these bugs. However, in practice it
is not always feasible, as the VM BIOS may be developed
as a separate project. In KVM removing the code that cir-
cumvented BIOS bugs turned out to be complicated, as KVM

merely provides an API for virtualizing VCPUs, and may
therefore be used with old and buggy BIOS implementations.
To fix KVM bugs without causing legacy software to fail,
we extended KVM API so it would allow the turning off of
quirks that were used to circumvent legacy BIOS bugs.

5.7 Bug Summary and Discussion

We are encouraged by the quantity and severity of the bugs
exposed during the validation process. Running the tests
provided several insights.

Debugging Time Debugging each bug and analyzing its
root cause took between a few minutes to a day, and on
average two hours. In general, instruction emulator bugs
triggered only by a certain instruction were the easiest to
debug. Bugs caused by races, missing documentation, or those
that were affected by the debugging process were significantly
harder to debug. The hardest bug to debug was certainly B89,
which occurred due to complex race conditions.

Execution Time The generation of each test takes on aver-
age five seconds, and running it on the VM less than a second.
To saturate the host, multiple generators can be used, and
each test can be executed multiple times. The size of each
test image is IMB on average and copying the tests from the
generator to the host can take negligible time.

Code Review Whenever we encountered a bug, we re-
viewed both the related code (e.g., the faulty function) and the
code that deals with related architectural features. Soon after,
we released code patches for fixing the bug, and these patches
were then reviewed by the KVM community. Although eight
of the bugs were found in internal or external reviews, the
reviews often missed similar bugs that were later hit by the
random test generator. For example, three of the bugs (B99,
B103 and B83) occurred practically on the same line of code,
yet the reviews missed the latter two bugs. Code review is
therefore essential but insufficient for hypervisor validation.

Bug Causes Hypervisor bugs can be attributed to two main
causes: not following the hardware specifications, and coding
errors. While the vast majority of the bugs (85%) were caused
by non-conformance to CPU specifications, they were less
severe, as they only jeopardized VM security and stability.
Some coding errors, however, caused the host to panic (§6)
and others could degrade the VM performance (B111, B112).
In the long run, we expect that most bugs would be caused
by coding errors once hypervisors implement and fix CPU
emulation features. Indeed, four out of the five software
regression bugs we encountered were due to coding mistakes
(B26, B48, B89, B101).

CPU Specification Intel x86 CPU specifications consist of
over 3000 pages due to the high complexity of the architecture.
We were not surprised to find that some bugs resulted from
documentation errors. In one case the CPU behavior was
undocumented (B69), in other cases it is undocumented

320

but publicly known (B71, B75, B103), and in another the
documentation was recently fixed (B70). In some cases the
behavior is documented but unclear (B68, B102, B113).

False Positive During the initial stages of our validation
effort we encountered several false indications of bugs. These
indications were caused by the adaptation of the test envi-
ronment to VCPUs and by missing KVM features (Table 1).
Afterwards, we encountered a single false-positive failure
in a test that exercised an internal and undocumented CPU
feature. Excluding these false indications, we encountered a
few test failures that were caused by incorrect emulation of
undocumented CPU features. Some may question whether
such bugs are real ones, yet since software tends to rely on
undocumented yet consistent hardware behavior, we do not
consider these cases as false positive indications.

False Negative To check whether the validation tool missed
bugs, we reviewed KVM bug reports and patches that were
sent to the stable 3.18 Linux branch. Our review found no
bugs that the validation tool should have hit. Nonetheless, our
testing was limited as we used a desktop CPU and have not
completed the enabling of the test devices. As a result, we
did not hit a bug in the way KVM handles machine-check
exceptions. Using a coverage tool [27] we checked which
KVM code is exercised by our tests. We found that the tests
do not cover some cases, for example, 16-bit task-switch.

Remaining Bugs As we concluded our project, we hit no
more failures in over 50k tests that ran in the regular KVM
execution mode. We believe that running more tests in this
mode on our testbed may find a few more bugs. We assume
that enabling the test devices, using other CPUs, and exercis-
ing hypervisor control features (e.g., VM save/restore) would
uncover many more bugs. In contrast to the regular execu-
tion mode, using the “emulation mode,” which stresses the
instruction emulator, continually reveals more bugs. Fixing
some of these bugs requires significant changes in the way
the instruction emulator operates.

5.8 CPU Architecture Flaws

We encountered in our project four test failures that were
caused by discrepancies between CPU and VCPU behavior,
but cannot be resolved by changing hypervisor software.
These failures occurred since the CPU architecture violates
in certain cases the VM properties as defined by Popek
and Goldberg [53]: hypervisors can either make VCPU
execution equivalent to real CPU execution' or run most
instructions efficiently by executing them directly on the
CPU, but it cannot do both. We attribute these limitations
to CPU architecture flaws. Although these flaws are likely to
have limited impact, they were previously unknown and we
therefore describe them in detail. We categorize the failure
causes into three groups.

! Excluding increased latency and reduced physical resources.

Non-Virtualizable State Intel VT does not virtualize the
physical address-width, which determines the size of the
physical addresses produced by paging [31]. This width
implicitly defines the number of reserved bits in PTEs, as
address bits above the width are reserved. A page-walk that
uses a PTE whose reserved bits are set triggers a page-fault.
Software can obtain this width using the CPUID instruction.

We find that hypervisors are incapable of setting a suitable
physical address-width for VCPUs [5]. Since the VM may
be migrated between servers with different physical address
width, hypervisors set a predefined fixed width that fits all
servers. As we tried to generate tests that match the physical
address-width that KVM reports, we encountered test failures,
and could not solve them by changing the hypervisor: if the
reported value is lower than the actual one, a page fault error-
code can incorrectly indicate, from the VM point of view,
that the reserved-bits are cleared; but if the reported value
is higher, the VM may map device RAM to unsupported
physical memory, thereby triggering an exit whenever the
VCPU accesses this memory.

Missing State Save/Restore Facilities When the hypervi-
sor performs VM-entry and exit, it needs to restore and save
the VM state correspondingly. Intel VT saves and restores
some of the VCPU registers atomically during VM-entry and
exit, and the hypervisor saves and restores others in software.
Our experiments indicated that the registers are restored in-
correctly in two cases.

The first case occurs when a VM executes an FSAVE
instruction, which stores the floating point unit (FPU) reg-
isters in memory. This state includes the last floating point
instruction pointer (FIP). In real-mode this value is calculated
using two internal registers:

[FSAVE FIP| = [Internal FCS]|x44[Internal FIP].

Hypervisors, however, cannot save the internal FCS register,
as its saving was deprecated in new CPUs. As a result, after
the hypervisor saves and restores the FPU registers of a VM,
execution of an F SAVE instruction in the VM may store an in-
valid FIP [5]. A similar issue was reported before to cause the
blue screen of death in certain Windows environments [11]
and was resolved with the recent deprecation of FCS storing.
Yet, our findings show that refraining from saving the FCS
had undesired side-effects.

The second case occurs when the hypervisor uses the
XSAVES instruction to save the VM extended-state regis-
ters. XSAVES does not save the raw value of a certain bit,
(XINUSE[1]), that serves to indicate whether a group of CPU
registers (XMM) are zeroed. Our findings show that as a
result the VCPU may save and restore these registers unnec-
essarily even when they are zeroed. The hypervisor can work
around this issue using the XSAVE instruction instead.

Errata 'While errata are undesirable regardless of virtual-
ization, they can also break the equivalence property of VMs.
This may occur when a VM executes the ENTER instruction,
which creates a stack frame for a procedure by copying stack

321

MITRE requires potential bug
ID CVEID privilege attack 1D
Cl 2014-3610 Vv host DoS B92
C2 2014-3647 X guest DoS B42
C3 2014-7842 X guest DoS B23
C4 2014-8480 Vv host DoS B43
C5 2014-8481 X host DoS B45
C6 2015-0239 X privilege escalation = B64

Table 2. Security vulnerabilities.

frame pointers from an old stack into a new one. Due to a
public erratum, copy operations may be carried out even if
the instruction execution encounters a page-fault [33]. This
behavior is observable when the source and destination mem-
ory overlap, thereby causing re-execution of the instruction to
read the partial copy results from the source memory, instead
of the original data. Our results indicate that page-faults in the
second level address translation page tables trigger the erra-
tum as well. As a result, VMs would experience it even when
no page-fault—from the point of view of the VM—occurs.

It should be emphasized that in all of the cases we de-
scribed, the physical CPU behavior follows public documen-
tation. Nonetheless, it results in differences between VCPUs
and CPUs that allow the VM to detect hypervisor presence
(red-pilling), a technique which malware uses to avoid analy-
sis.

5.9 Other Hypervisors

Using our methods for validating every hypervisor is possi-
ble, but requires some effort, as described in §4. Validation
of proprietary hypervisors is more challenging, yet requires
modifying the way the test is loaded and results are communi-
cated to the tester, as well as only using assigned test devices.
In addition, debugging and finding the root cause of bugs on
proprietary hypervisors is a cumbersome task.

Although we have not run our VCPU validation system
to test other hypervisors, we see no reason it cannot be done,
and initial indications are that doing so would reveal bugs
in these hypervisors as well. The Xen hypervisor developers
tracked our bug reports and found several similar bugs in their
system (B42, B44, B23), as well as a similar security exploit
(XSA-110). To obtain some indication whether VMware
suffers from similar bugs, we ran the KVM unit-test suite
on VMware Workstation 10. This suite incorporates tests
originally created to validate KVM bug fixes, as well as
additional tests we introduced to validate several fixes of
the KVM bugs we encountered. Running these tests revealed
that VMware Workstation 10 suffers from one of the bugs
(B94).

6. Security

We found that the bugs introduce six security vulnerabilities,
listed in Table 2, along with their MITRE CVE ID, whether

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3610
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3647
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7842
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8480
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8481
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0239

they can be exploited by an unprivileged userspace code, the
potential attacks, and the bugs that caused them. We denote
these vulnerabilities by Cux.

As shown, some bugs can cause the VM to crash since
KVM shuts it down due to missing emulation support (C3),
or because it corrupts the VCPU state and causes VM-entry
to fail the CPU consistency tests (C2). These bugs can be
used to launch a DoS attack on the VM. Other bugs cause
the host to panic (C1, C4, C5), and can therefore be used to
launch a DoS attack on the host. One of the bugs can corrupt
the VCPU state in a way that allows unprivileged userspace
code to gain VM kernel-space privileges. This bug can be
used to launch a privilege escalation attack on the VM (C6).

Four of the vulnerabilities we found can be exploited by
an unprivileged VM userspace code. This may be surprising,
as hypervisors usually trap only a few events that occur in the
VM userspace. However, unprivileged userspace applications
can trigger bugs in the most bug-prone hypervisor component:
the instruction emulator.

Instruction emulator bugs are exploitable by crafted in-
structions that access MMIO regions. Although most MMIO
regions are accessible only to the OS, they are sometimes
also accessible from userspace. In Linux, to speed up the ex-
ecution of the gett imeofday system-call, the OS grants
processes a read access to the high precision timer (HPET)
MMIO region, which is emulated by the hypervisor. In addi-
tion, some systems assign devices to userspace processes [21].
As a result, a malicious VM process can cause the hypervisor
to emulate most of the instructions, triggering most of the
bugs, and thereby exploiting most of the instruction emulator
vulnerabilities (C3, C4, C5).

Yet certain instruction emulator bugs occur during the
emulation of instructions that do not have memory operands,
or occur only when these operands have specific values. A
malicious VM process can still exploit these bugs in VMs
that consist of multiple VCPUs that run concurrently on
multiple physical CPUs, by employing cross-modifying code:
the VM triggers an exit on an instruction that accesses an
MMIO region, and replaces it with another instruction before
the hypervisor decodes it. Using this technique, a malicious
process can trigger every instruction emulator bug.

The flow of such an attack (C6) is depicted in Figure 2.
The malicious application creates two threads, thereby caus-
ing the VM OS to schedule each one on a different VCPU.
The first thread, which runs on VCPUQO, writes a benign in-
struction that accesses MMIO, MOV from the HPET in our
example (1). This thread then executes the instruction (2),
which causes VCPUO to exit to the hypervisor (3). Then,
VCPU1 overwrites the instruction that VCPUO executed with
the bug triggering instruction, SYSENTER in our example
(4). Since it is hard for VCPUT1 to hit the exact point in time
in which the exit occurs, it alternately switches between the
MOV and SYSENTER instructions. The hypervisor then tries
to emulate the instruction that triggered the exit, but fetches

322

vcPUO hypervisor
(1) Write (2) Execute (3) VM-exit _(ST Read _(E)Tin_w_la?e>
MMIO MMIO “buggy” “buggy”
accessing accessing instruction instruction
instruction instruction
| writable & J”SYSENTER”
executable

“MOV R8, [HPET]” memory page

“SYSENTER”
write write

write MMIO (4) write MMIO
“buggy” accessing “buggy” accessing
instruction instruction instruction instruction

veeur

Figure 2. Exploiting an instruction emulator bug.

the modified instruction instead (5). Once emulated (6), this
instruction triggers the bug.

As long as hypervisor code can introduce bugs, hypervisor
security may be compromised. Obviously, removing code in
the hypervisor can improve security, but doing so can sacri-
fice hypervisor functionality and optimizations. To improve
security without such sacrifice, others have suggested pre-
serving the previous VM state after failure [40], reducing the
trusted computing base of hypervisors [30, 64], and avoiding
assertions that may crash the host. Our research leads us to
suggest two additional security improvements.

One way to improve security is for hypervisors to avoid
killing VMs, even if they cannot handle a VM trap or cannot
reenter guest-mode, since such errors can be triggered by
malicious VM processes. The hypervisor should gracefully
recover, fix corruptions in the VCPU state and deliver an
error indication to the VM. The architecture can define
a new architectural event to indicate that the hypervisor
encountered a recoverable error. OSes would be able to
react to this event according to their policy, e.g., by killing
the running process. Although this behavior allows a VM
process to detect hypervisor presence, it is more secure since
it prevents malicious processes from crashing the entire VM.
We implemented a partial solution in KVM (B23).

7. Related Work

The challenge of developing a secure and correct hypervisor
has been addressed using various approaches.

Formal Verification Arguably, the most compelling ap-
proach is using formal verification to prove hypervisor code
correctness. The most ambitious attempt for such verifica-
tion has been the Verisoft-XT project, which verified the
Microsoft Hyper-V [41]. The effort of verifying this hypervi-
sor required 60 person-years. Despite this effort, verification
is incomplete, as fewer than 200 instructions were modeled,
and the verification of several basic CPU features such as
interrupts is partial at best [20]. During the project, “less than
a handful (bugs) have been found” [41], which the project
developers attributed to the low defect density of the hypervi-

sor. However, despite the relatively small number of Hyper-V
bug reports, some bugs, which one may expect verification
would eliminate, postdate the project [48, 49, 71].

Micro-Hypervisors Micro-hypervisors can deliver better
security because they have a smaller attack surface. For in-
stance, the NOVA hypervisor [64] consists of fewer than 10k
lines of code (LoC) in its trusted computing base (TCB). The
reduction of the TCB indeed reduces the risk of comprising
the host security. Yet micro-hypervisors still need to carry
out the same virtualization tasks as other hypervisors. Al-
though micro-hypervisors run these tasks in userspace, they
are just as susceptible to software bugs that can compromise
the VM security and robustness. To eliminate at least some of
these bugs, there should be as little interaction as possible be-
tween the VM and the hypervisor. Unfortunately, this also re-
sults in reduced usability. For example, the NoHype [65] and
Jailhouse [61] micro-hypervisors cannot perform dynamic
provisioning of CPUs and memory.

Fuzzing Hypervisors can be validated by code fuzzing and
differential testing—generating a random test, running it
on both a VM and bare-metal system, and comparing the
results. Recent work includes PokeEMU [42], which creates
test cases based on high fidelity emulator implementation.
PokeEMU uses symbolic execution to explore code-paths
in a CPU emulator and thereby infers the CPU instruction
set and the machine state that affects each instruction. Using
this information, PokeEMU creates test cases, each of which
exercises a single instruction under certain conditions. The
test cases can then be executed on an instruction emulator
and a real CPU to find discrepancies.

In contrast to PokeEMU, our system exercises multiple
random instructions and test templates on each test, and con-
sequently can reveal additional bugs. We found, for example,
bugs that are only apparent when running multiple random in-
structions (B48, B111), bugs in interrupt delivery (B88, B90),
and bugs that only occur on multi-core VMs (B85, B106).

To reduce testing time PokeEMU makes assumptions that
allows it to test fewer cases, yet limit its coverage. First, it
exercises only a single byte sequence of each instruction,
under the assumption that the incremental benefit from more
testing is relatively low. However, our results indicate that
several bugs occur only when an instruction is emulated with
a certain prefix, addressing mode or operands (B6, B73).
Second, PokeEMU generates an initial machine state that
exercises only exercises previously unexplored code-paths,
and therefore may not find computation bugs (B54, B65).

Unlike vendor validation tools, PokeEMU delivers a high
rate of false-positive indications of bugs. Roughly 10% of
PokeEMU test-cases that the QEMU emulator ran failed,
undefined CPU behavior was identified as the cause for a sub-
stantial number of failures. Our system suffered a negligible
false-positive rate, since the architectural simulator indicates
which instruction results are undefined, and the test generator
prevents nondeterministic results due to interrupts or errata.

323

8. Future Work

One of the main challenges is the validation of host events that
affect the VM execution, for example live migration of a VM
from one physical host to another or paging of VM memory.
Since such events often involve I/O operations, testing them
is a prolonged process, and test failures are thus not likely to
be reproducible. Although testing is possible using execution
replay mechanisms [38], doing so can prevent existing bugs
from being triggered, because it adds synchronization events.

Additional effort is also required for the validation of bug-
prone subsystems of hypervisors. While CPU validation tools
use test templates that stress bug-prone CPU subsystems,
hypervisors may have additional weak spots. For instance, hy-
pervisors often erroneously virtualize the time-stamp counter.
Test templates for the validation of such features should there-
fore be incorporated into the CPU validation tools.

Finally, CPU validation usually focuses on changes in the
and macro- or micro-architecture and assume the executed
code is reasonable. This strategy is based on the assump-
tion that bugs in legacy features or bugs that are triggered by
senseless code do not occur in common OSes and therefore,
if such a bug is uncovered, the CPU vendor can publish an
erratum and guide software developers to avoid it. Nonethe-
less, virtualization raises the question whether this scheme is
reasonable. Future research may evaluate the implications of
existing CPU errata on virtualized environments and whether
they pose a security threat.

9. Conclusions

Hardware-assisted virtualization is popular, arguably allow-
ing users to run multiple workloads robustly and securely
while incurring low performance overheads. But the robust-
ness and security are not to be taken for granted, as it is
challenging to virtualize the CPU correctly, notably in the
face of newly added features and use cases. CPU vendors
invest a lot of effort—hundreds of person years or more—
to develop validation tools, and they exclusively enjoy the
benefit of having an accurate reference system. We therefore
speculate that effective hypervisor validation could truly be
made possible only with their help. We further contend that
it is in their interest to provide such help, as the majority of
server workloads already run on virtual hardware, and this
trend is expected to continue. We hope that open source hy-
pervisors will be validated on a regular basis by Intel Open
Source Technology Center.

Acknowledgments

We thank Paolo Bonzini from Redhat and our shepherd An-
drew Baumann. The research leading to the results presented
in this paper was partially supported by: the Israel Science
Foundation (grant No. 605/12); the Ministry of Science and
Technology, Israel (grant No. 3-9779); and the Google Patch
Reward Program.

id description patch id description patch
Instruction Emulator B65 32-bit operand wraparound fails bac155310be3
o . B66 NULL dereferencing on SLDT/STR 63ea0a49ae0b
b ompatibility mode recognized incortectly 420107 B67 MOV CR/DR does not ignore MOD 9b88ae99d2fe
B3 N (g)P emlile{tion cleai]s lg AX[63:32] a825F5ccdasd B68 Mishandling REP-string 32-bit counters eel22a7109e4
B4 CMOV DWORD does not Cleal: (63:32] 140bad89fd25 B69 Discrepencies on zero ite_ratif)ns rep_—string 428e3d08574b
BS Outer-privilege level RET unsuppor.te J 0689 19a¢793F B70 Wrong call-far operand size in 64-bit mode acac6f89574c
B6 Wrong emulation of "XADD Rx.Rx’ e212297cdd2 B71 BSF and BSR misbehave when source is zero 900efe200e31
B7 Bit-ops emulation ignores offset ’on 64-bit 7dec5603b6b3 B72 POPA emulation may not clear bits [63:32] 6fd8e1275709
B8 SMSW emulation is incorrect in 64-bit 32e94d0696¢2 Debug
B9 CMPXCHG16B emulated as 8B 2aa05f2437b9
B10 RDPMC checks the counter incorrectly 67f4d4288c35 g;i Lrg(lgr(r)icltv[l\g(\)/le}z{%P;g}? [123. 32]1=0 24;2;];93%2(;;13629
B11 CMPXCHG emulation sets incorrect flags 37c56412854b B75 RIP is not advanced on T CE];’;P - fd2a445294d2
B12 SGDT/SIDT with CPL=3 causes #GP 606b1c3e8759 6 RF—f fter skipped instructi bb663c7ada3s
B13 Loading segments ignores extended base 2eedcac8a97c 537 RF:0 a icr Shle.e tl‘ns ruction 4668 ; 525251
B14 LDTR/TR extended base is ignored e37a75al3cda = onlault mjection . eec
B15 VEX-prefix is decoded incorrectly d14cb5df5903 B78 RF=0 on interrupt during REP—strlng b9alecb909e8
B16 No canonical check on near branches 234f3ce485d5 g;g gﬁg/égﬁggizgrzz Zvél:;g]lg 2{3;;8221;;;722
B17 #DB is injected when RF is set 4161a569065b T .
BIS RF=I after instruction emulation 4467c3f1adle B8l Breakpoints do not consider base 82b32774c2d0
B19 POPF restores RF 163b135¢7b09 B82 DR6[3:0] not cleared on #DB 7305eb5d8cf1
B20 Broken vendor specific instructions check 3a6095a0173a BE3 Wrong DR7 on task-switch when host debug 3db176d5b417
B21 Wrong error code on limit violation 3606189fa3da Local-APIC
B22 No #GP on descriptor load w/L=1&D=0 040c8dc8aSaf -
B23 Guest userspace can crash VM a2b9ebcla3dsa B34 No relocation of APIC base db324£e6f20b
B24 Spurious segment type checks c49¢759F7268 B85 APIC broadcast does not work 3944572928e0
B25 Wrong exception when using DR4/5 1682697982 B86 Wrong local APIC mode 1e1b6c264435
B26 Instructions that cross page boundary fault 08dad4aedbal B87 ~ TSC-deadline is not cleared faeOba215734
B27 SYSCALL mistakenly clears FLAGS[1] 807¢142595ab B88 Spurlious interrupt on TSC-deadline 1e0ad70cc195
B28 #GP exception instead of #SS abc7d8a4c935 B89 Lost interrupt due to race £210£7572bed
B29 Missing limit checks on RIP assignments d50eaal8039b B90 No NMI with disabled LAPIC 173beedc1601
B30 Segment privilege checked on each access a7315d2f3c6e MSRs
B31 Wrong stack size on linear address calc. lclc35ae4b75
B32 MOVNTI minimum opsize is not respected ~ ed9aad215ff3 B9l No #GP on invalid PAT CR 4566654bb9be
B33 No #GP when loading non-canonical base 9a9abf6b6127 B92 No canonical checks on WRMSR 854e8bblaa06
B34 FLAGS are updated on faulting instructions ~ 38827dbd3fb8 B93 CPUID limit not reflected
B35 MOV to CR3 cannot set bit 63 9d88fca71a99 B94 Fast-string not reflected
B36 PUSH sreg is not emulated as new CPUs do 0fcc207c66a7 B95 Entry failure on real-mode exception 3ffb24681cc4
B37 Wrong flags on CMPS and SCAS 3aca37223626 B96 No #GP on ICR2 and DFR MSRs ¢69d3d9bc168
B38 MOV-sreg to memory uses incorrect size b5bbf10ee6b6 B97 XD_DISABLE not reflected))
B39 DR6 incorrect on general detect exception 6d2a0526b09%e B98 MSR_1A32_BNDCFGS is corrupted after exit ~ 9e9c3fed0Obed
B40 Wrong mod/rm decoding 5b38ab877e5b Task-Switch
B41 Wrong address calculation on relative JMP 05¢83ec9b73c
B42 No canonical check on far JMP d1442d85¢c30 B99 Breakpoints are mistakenly disabled 1f854112553a
B43 NULL dereference on PREFETCH 3f6£1480d86b B100 CR3/LDTR are saved in TSS 5¢7411e29374
B44 Wrong CLFLUSH decoding 13e457e0eebf B101 Incorrect CPL check on task-switch 2c2ca2d12f5¢
B45 NULL dereference of memopp a430c9166312 B102 Wrong CS.DPL and RPL check 9a4cfb27£723
B46 MOVBE reg/mem determined incorrectly 39f062£f51b2 B103 Clear DR7.LE during task-switch 0e8209969afb
B47 No RIP/RSP mask on 32-bit SYSEXIT bf0b682c9bba Reset
B48 Immediate is considered as memory op. d29b9d7ed76¢
B49 Privileged instructions cause #GP on VM86 64a38292ed5f B104 No INIT and reset differences d28bc9dd25ce
B50 PUSHF on VM86 does not mask VM flag bc397a6c914c B105 Exception delivery after reset 5f7552d4a56¢
B51 Near branches operand size is incorrect 58b7075d059f B106 BSP core cannot be reconfigured 58d269d8cccc
B52 #PF error-code does not indicate write c205fb7d7d4f8 B107 CR2is not cleared on reset 1119022¢71fb
B53 Failure on em_call_far returns success 80976dbb5cb2 B108 DRO-DR3 are not cleared on reset ae56ledeb421
B54 No wraparound on LDT/GDT accesses edccda7ca7eS B109 LINTO was enabled after boot 90de4al87518
B55 POP [ESP] is not emulated correctly ab708099a061 Other
B56 Segment loads set access bit when it is set e2cefa746e7e
B57 FNSTCW/FNSTSW cause spurious #PF 16bebefe29d8 B110 VMX ignores Compabjlity mode 27e6fb5dae28
B58 #GP on JMP/CALL using call-gate 3dc4beaf6b92 BI11 Perf. counters cause exit storm 671bd9934a86
B59 IRET does not clear IRET blocking 801806d956¢2 B112 XSAVES sets all XSTATE_BV bits dfldaba7dlcb
B60 CMPXCHG does not set A/D 2fcf5c8ae244 B113 CPL!=0 on protected mode entry ae9fedc793c4
B61 ARPL cause spurious exceptions 2276b5116e98 B114 CR reads ignore compatibility mode 1e32c07955b4
B62 CALL uses incorrect stack size 82268083fa78 B115 PDPTE[7] is not always reserved 5f7dde7bbb3c
B63 Wrong far RET opsize in 64-bit 16794aaaab66 B116 CR3 reserved bits are incorrect 346874c9507a
B64 SYSENTER emulation is broken £3747379accb B117 Wrong reserved bits in page tables cd9ae5fe47df

Table 3. Summary of the bugs we found and their associated patches (clickable in the digital format of the paper).

324

https://github.com/torvalds/linux/commit/42bf549f3c67
https://github.com/torvalds/linux/commit/e6e39f0438bc
https://github.com/torvalds/linux/commit/a825f5cc4a84
https://github.com/torvalds/linux/commit/140bad89fd25
https://github.com/torvalds/linux/commit/9e8919ae793f
https://github.com/torvalds/linux/commit/ee212297cd42
https://github.com/torvalds/linux/commit/7dec5603b6b8
https://github.com/torvalds/linux/commit/32e94d0696c2
https://github.com/torvalds/linux/commit/aaa05f2437b9
https://github.com/torvalds/linux/commit/67f4d4288c35
https://github.com/torvalds/linux/commit/37c564f2854b
https://github.com/torvalds/linux/commit/606b1c3e8759
https://github.com/torvalds/linux/commit/2eedcac8a97c
https://github.com/torvalds/linux/commit/e37a75a13cda
https://github.com/torvalds/linux/commit/d14cb5df5903
https://github.com/torvalds/linux/commit/234f3ce485d5
https://github.com/torvalds/linux/commit/4161a569065b
https://github.com/torvalds/linux/commit/4467c3f1ad16
https://github.com/torvalds/linux/commit/163b135e7b09
https://github.com/torvalds/linux/commit/3a6095a0173a
https://github.com/torvalds/linux/commit/3606189fa3da
https://github.com/torvalds/linux/commit/040c8dc8a5af
https://github.com/torvalds/linux/commit/a2b9e6c1a35a
https://github.com/torvalds/linux/commit/c49c759f7a68
https://github.com/torvalds/linux/commit/16f8a6f9798a
https://github.com/torvalds/linux/commit/08da44aedba0
https://github.com/torvalds/linux/commit/807c142595ab
https://github.com/torvalds/linux/commit/abc7d8a4c935
https://github.com/torvalds/linux/commit/d50eaa18039b
https://github.com/torvalds/linux/commit/a7315d2f3c6c
https://github.com/torvalds/linux/commit/1c1c35ae4b75
https://github.com/torvalds/linux/commit/ed9aad215ff3
https://github.com/torvalds/linux/commit/9a9abf6b6127
https://github.com/torvalds/linux/commit/38827dbd3fb8
https://github.com/torvalds/linux/commit/9d88fca71a99
https://github.com/torvalds/linux/commit/0fcc207c66a7
https://github.com/torvalds/linux/commit/5aca37223626
https://github.com/torvalds/linux/commit/b5bbf10ee6b6
https://github.com/torvalds/linux/commit/6d2a0526b09e
https://github.com/torvalds/linux/commit/5b38ab877e5b
https://github.com/torvalds/linux/commit/05c83ec9b73c
https://github.com/torvalds/linux/commit/d1442d85cc30
https://github.com/torvalds/linux/commit/3f6f1480d86b
https://github.com/torvalds/linux/commit/13e457e0eebf
https://github.com/torvalds/linux/commit/a430c9166312
https://github.com/torvalds/linux/commit/39f062ff51b2
https://github.com/torvalds/linux/commit/bf0b682c9b6a
https://github.com/torvalds/linux/commit/d29b9d7ed76c
https://github.com/torvalds/linux/commit/64a38292ed5f
https://github.com/torvalds/linux/commit/bc397a6c914c
https://github.com/torvalds/linux/commit/58b7075d059f
https://github.com/torvalds/linux/commit/c205fb7d7d4f8
https://github.com/torvalds/linux/commit/80976dbb5cb2
https://github.com/torvalds/linux/commit/edccda7ca7e5
https://github.com/torvalds/linux/commit/ab708099a061
https://github.com/torvalds/linux/commit/e2cefa746e7e
https://github.com/torvalds/linux/commit/16bebefe29d8
https://github.com/torvalds/linux/commit/3dc4bc4f6b92
https://github.com/torvalds/linux/commit/801806d956c2
https://github.com/torvalds/linux/commit/2fcf5c8ae244
https://github.com/torvalds/linux/commit/2276b5116e98
https://github.com/torvalds/linux/commit/82268083fa78
https://github.com/torvalds/linux/commit/16794aaaab66
https://github.com/torvalds/linux/commit/f3747379accb
https://github.com/torvalds/linux/commit/bac155310be3
https://github.com/torvalds/linux/commit/63ea0a49ae0b
https://github.com/torvalds/linux/commit/9b88ae99d2fe
https://github.com/torvalds/linux/commit/ee122a7109e4
https://github.com/torvalds/linux/commit/428e3d08574b
https://github.com/torvalds/linux/commit/acac6f89574c
https://github.com/torvalds/linux/commit/900efe200e31
https://github.com/torvalds/linux/commit/6fd8e1275709
https://github.com/torvalds/linux/commit/a4ab9d0cf1ef
https://github.com/torvalds/linux/commit/5777392e83c9
https://github.com/torvalds/linux/commit/fd2a445a94d2
https://github.com/torvalds/linux/commit/bb663c7ada38
https://github.com/torvalds/linux/commit/d6e8c8545651
https://github.com/torvalds/linux/commit/b9a1ecb909e8
https://github.com/torvalds/linux/commit/6f43ed01e87c
https://github.com/torvalds/linux/commit/6bdf06625d24
https://github.com/torvalds/linux/commit/82b32774c2d0
https://github.com/torvalds/linux/commit/7305eb5d8cf1
https://github.com/torvalds/linux/commit/3db176d5b417
https://github.com/torvalds/linux/commit/db324fe6f20b
https://github.com/torvalds/linux/commit/394457a928e0
https://github.com/torvalds/linux/commit/1e1b6c264435
https://github.com/torvalds/linux/commit/fae0ba215734
https://github.com/torvalds/linux/commit/1e0ad70cc195
https://github.com/torvalds/linux/commit/f210f7572bed
https://github.com/torvalds/linux/commit/173beedc1601
https://github.com/torvalds/linux/commit/4566654bb9be
https://github.com/torvalds/linux/commit/854e8bb1aa06
https://github.com/torvalds/linux/commit/3ffb24681cc4
https://github.com/torvalds/linux/commit/c69d3d9bc168
https://github.com/torvalds/linux/commit/9e9c3fe40bcd
https://github.com/torvalds/linux/commit/1f854112553a
https://github.com/torvalds/linux/commit/5c7411e29374
https://github.com/torvalds/linux/commit/2c2ca2d12f5c
https://github.com/torvalds/linux/commit/9a4cfb27f723
https://github.com/torvalds/linux/commit/0e8a09969afb
https://github.com/torvalds/linux/commit/d28bc9dd25ce
https://github.com/torvalds/linux/commit/5f7552d4a56c
https://github.com/torvalds/linux/commit/58d269d8cccc
https://github.com/torvalds/linux/commit/1119022c71fb
https://github.com/torvalds/linux/commit/ae561edeb421
https://github.com/torvalds/linux/commit/90de4a187518
https://github.com/torvalds/linux/commit/27e6fb5dae28
https://github.com/torvalds/linux/commit/671bd9934a86
https://github.com/torvalds/linux/commit/df1daba7d1cb
https://github.com/torvalds/linux/commit/ae9fedc793c4
https://github.com/torvalds/linux/commit/1e32c07955b4
https://github.com/torvalds/linux/commit/5f7dde7bbb3c
https://github.com/torvalds/linux/commit/346874c9507a
https://github.com/torvalds/linux/commit/cd9ae5fe47df

References

[1] AGESEN, O., MATTSON, J., RUGINA, R., AND SHELDON, J.
Software techniques for avoiding hardware virtualization exits.

In USENIX Annual Technical Conference (ATC) (2011).

ALBERTINI, A. x86 oddities.
http://code.google.com/p/corkami/wiki/
x86oddities, 2011.

2

—

3

—

ALKASSAR, E., HILLEBRAND, M., PAUL, W., AND
PETROVA, E. Automated verification of a small hypervisor. In
Verified Software: Theories, Tools, Experiments (VSTTE),
vol. 6217 of Lecture Notes in Computer Science. Springer,
2010, pp. 40-54.

AMIT, N. Increase the number of fixed MTRR regs to 10.

http://comments.gmane.org/
gmane.linux.kernel/1727771,2014.

[5] AMIT, N. Two CPU conformance issues in KVM/x86.
http://article.gmane.org/
gmane.comp.emulators.kvm.devel /133306, 2015.

(4]

[6] ARCANGELI, A. Using Linux as hypervisor with KVM.
CERN Computing Seminar http://indico.cern.ch/
event/39755/material/slides/0.pdf, 2008.

[7

—

BAILEY, M. The economics of virtualization: Moving toward
an application-based cost model.
www.vmmware.com/files/pdf/Virtualization-
application-based-cost-model-WP-EN.pdf
International Data Corporation (IDC), 2009.

[8

—_—

BELLARD, F. QEMU, a fast and portable dynamic translator.
In USENIX Annual Technical Conference (ATC) (2005),
pp. 41-46.

BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR,
M., HAR’EL, N., GORDON, A., LIGUORI, A.,
WASSERMAN, O., AND YASSOUR, B.-A. The turtles project:
Design and implementation of nested virtualization. In
USENIX Symposium on Operating Systems Design &
Implementation (OSDI) (2010).

BENNEE, A. Validating and defending QEMU TCG targets.
KVM Forum, 2014.

[11] BEULICH, J. x86-64: properly handle FPU code/data
selectors. Linux Kernel Mailing List
http://lkml.org/1lkml/2013/10/16/258,2013.

[9

[

(10]

[12] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,
S. Accelerating two-dimensional page walks for virtualized
systems. In ACM Architectural Support for Programming
Languages & Operating Systems (ASPLOS) (2008).

[13] BITTMAN, T. J., DAWSON, P., AND WARRILOW, M. Magic
quadrant for x86 server virtualization infrastructure. Tech.
Rep. ID:G00268538, Gartner, Inc., July 2015.
http://www.gartner.com/technology/
reprints.do?id=1-2JFZ1KP&ct=150715.

[14] BITTMAN, T. J., MARGEVICIUS, M. A., AND DAWSON, P.
Magic quadrant for x86 server virtualization infrastructure.
Tech. Rep. ID:G00262673, Gartner, Inc., 2014.

[15] BOHRA, A. E., AND CHAUDHARY, V. VMeter: Power
modelling for virtualized clouds. In /IEEE Parallel &

325

Distributed Processing, Workshops and Phd Forum (IPDPSW)
(2010), pp. 1-8.

[16] BONZINI, P. KVM: x86 emulator: emulate MOVAPS and
MOVAPD SSE instructions. Linux Kernel Mailing List
http://lkml.org/1lkml/2014/3/17/384,2014.

[17] BULYGIN, Y., LOUCAIDES, J., FURTAK, A., BAZHANIUK,
O., AND MATROSOV, A. Summary of attacks against BIOS
and secure boot. DEF CON, 2014.

[18] CITRIX SYSTEMS. Xen security advisories.
http://xenbits.xen.org/xsa/. Visited: Mar 2015.

[19] CiTRIX SYSTEMS. Citrix XenServer 6.2.0 administrator’s
guide, 2014.

[20] COHEN, E., PAUL, W., AND SCHMALTZ, S. Theory of multi
core hypervisor verification. In SOFSEM: Theory and
Practice of Computer Science. Springer, 2013, pp. 1-27.

[21] CORBET, J. Safe device assignment with VFIO. LWN.net,
http://lwn.net/Articles/474088/,2012.

[22] DALL, C., AND NIEH, J. KVM/ARM: The design and
implementation of the Linux ARM hypervisor. In ACM
Architectural Support for Programming Languages &
Operating Systems (ASPLOS) (2014), pp. 333-348.

[23] DARROW, B. Is live migration coming to Amazon Web
Services? smart money says yes. Gigaom, 2014.

[24] DARROW, B. Xen security issue prompts Amazon, Rackspace
cloud reboots. Gigaom, 2015.

[25] ELHAGE, N. Virtunoid: Breaking out of KVM. Black Hat
USA (2011).

[26] ERSEK, L. Open virtual machine firmware (OVMF status
report). http://www.linux—kvm.org/downloads/
lersek/ovmf-whitepaper-c770£f8c.txt, 2014.

[27] gcova test coverage program. https:
//gcc.gnu.org/onlinedocs/gcc/Geov.html, 2015.

[28] GOOGLE, INC. Google cloud platform FAQ.

http://cloud.google.com/compute/docs/faq.
Visited: Feb 2015.

[29] GRUSKOVNJAK, J. Advanced exploitation of Xen hypervisor
Sysret VM escape vulnerability. VUPEN Vulnerability
Research Team (VRT) Blog, 2012.
http://www.vupen.com/blog/
20120904.Advanced_Exploitation_of_Xen_
Sysret_VM_Escape_CVE-2012-0217.php.

[30] HONIG, A. Security hardening of KVM. KVM Forum, 2014.
[31] INTEL CORPORATION. Intel 64 and TA-32 Architectures

Software Developer’s Manual. Reference number: 325462,
2014.

[32] INTEL CORPORATION. Intel virtualization technology for
directed I/O, architecture specification, Rev. 2.3, 2014.

[33] INTEL CORPORATION. Intel Xeon processor E5 family
specification update. Reference number 326510-015, 2014.

[34] KERNEL BUG TRACKER. Bug 86161. http://
bugzilla.kernel.org/show_bug.cgi?id=86161,
2014.

http://code.google.com/p/corkami/wiki/x86oddities
http://code.google.com/p/corkami/wiki/x86oddities
http://comments.gmane.org/gmane.linux.kernel/1727771
http://comments.gmane.org/gmane.linux.kernel/1727771
http://article.gmane.org/gmane.comp.emulators.kvm.devel/133306
http://article.gmane.org/gmane.comp.emulators.kvm.devel/133306
http://indico.cern.ch/event/39755/material/slides/0.pdf
http://indico.cern.ch/event/39755/material/slides/0.pdf
 www.vmware.com/files/pdf/Virtualization-application-based-cost-model-WP-EN.pdf
 www.vmware.com/files/pdf/Virtualization-application-based-cost-model-WP-EN.pdf
http://lkml.org/lkml/2013/10/16/258
http://www.gartner.com/technology/reprints.do?id=1-2JFZ1KP&ct=150715
http://www.gartner.com/technology/reprints.do?id=1-2JFZ1KP&ct=150715
http://lkml.org/lkml/2014/3/17/384
http://xenbits.xen.org/xsa/
http://lwn.net/Articles/474088/
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://cloud.google.com/compute/docs/faq
http://www.vupen.com/blog/20120904.Advanced_Exploitation_of_Xen_Sysret_VM_Escape_CVE-2012-0217.php
http://www.vupen.com/blog/20120904.Advanced_Exploitation_of_Xen_Sysret_VM_Escape_CVE-2012-0217.php
http://www.vupen.com/blog/20120904.Advanced_Exploitation_of_Xen_Sysret_VM_Escape_CVE-2012-0217.php
http://bugzilla.kernel.org/show_bug.cgi?id=86161
http://bugzilla.kernel.org/show_bug.cgi?id=86161

[35] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. KVM: the Linux virtual machine monitor. In
Ottawa Linux Symposium (OLS) (2007), vol. 1, pp. 225-230.

[36] K1vITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. KVM: the Linux Virtual Machine Monitor.
Ottawa Linux Symposium (OLS) (2007).

[37] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK,
J., Cock, D., DERRIN, P., ELKADUWE, D., ENGELHARDT,
K., KOLANSKI, R., NORRISH, M., ET AL. seL.4: Formal
verification of an OS kernel. In ACM Symposium on
Operating Systems Principles (SIGOPS) (2009), pp. 207-220.

[38] LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,
lightweight application execution replay on commodity
multiprocessor operating systems. In ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (2010), pp. 155-166.

[39] LAWTON, K. P. Bochs: A portable pc emulator for unix/x.
Linux Journal 1996, 29es (1996), 7.

[40] LE, M., AND TAMIR, Y. Rehype: Enabling VM survival
across hypervisor failures. In ACM/USENIX International
Conference on Virtual Execution Environments (VEE) (2011),
pp- 63-74.

[41] LEINENBACH, D., AND SANTEN, T. Verifying the Microsoft
Hyper-V hypervisor with VCC. In FM 2009: Formal Methods.
Springer, 2009, pp. 806-809.

[42] MARTIGNONI, L., MCCAMANT, S., POOSANKAM, P.,
SONG, D., AND MANIATIS, P. Path-exploration lifting: Hi-fi
tests for lo-fi emulators. ACM SIGARCH Computer
Architecture News (CAN) 40, 1 (2012), 337-348.

[43] MARTIGNONI, L., PALEARI, R., FRESI ROGLIA, G., AND
BRUSCHI, D. Testing system virtual machines. In ACM
International Symposium on Software Testing and Analysis
(ISSTA) (2010), pp. 171-182.

[44] MARTIGNONI, L., PALEARI, R., ROGLIA, G. F., AND
BRuscHI, D. Testing CPU emulators. In ACM International
Symposium on Software Testing and Analysis (ISSTA) (2009),
pp- 261-272.

[45] MATTSON, J. Running nested VMs. http:
//communities.vmware.com/docs/DOC-8970,

2015.

[46] McCoYD, M., KRUG, R. B., GOEL, D., DAHLIN, M., AND
YOUNG, W. Building a hypervisor on a formally verifiable
protection layer. In IEEE Hawaii International Conference on
System Sciences (HICSS) (2013), pp. 5069-5078.

[47] MCKENNEY, P. E. Reducing OS jitter due to per-CPU
kthreads. Linux
3.19:Documentation/kernel-per-CPU-kthreads. txt.

[48] MICROSOFT. 0x20001” stop error when you start a Linux
VM in Windows Server 2008 R2 SP1. KB2550569, 2011.

[49] MICROSOFT. Cross-page memory read or write operation
crashes virtual machine. KB2894485, 2013.

[50] NAaTAPOV, G. KVM: VMX: mark unusable segment as
nonpresent. http://comments.gmane.org/
gmane.comp.emulators.kvm.devel /111948, 2013.

326

[51] NAYSHTUT, A. KVM: x86: emulate MOVDQA.
http://bugs.launchpad.net/ubuntu/+source/
linux/+bug/1330177,2014.

[52] NGUYEN, A., RAJ, H., RAYANCHU, S., SAROIU, S., AND
WOLMAN, A. Delusional boot: Securing hypervisors without
massive re-engineering. In ACM SIGOPS European
Conference on Computer Systems (EuroSys) (2012),
pp. 141-154.

[53] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements
for virtualizable third generation architectures.
Communications of the ACM (CACM) 17 (1974), 412-421.

[54] The QEMU machine protocol (QMP).
http://wiki.gemu.org/QMP. Accessed: Aug 2015.

[55] RED HAT, INC. Red Hat vulnerabilities.

http://access.redhat.com/security/cve/,

2014.

RED HAT, INC. Bug 1167595. Bugzilla

http://bugzilla.redhat.com/show_

bug.cgi?id=1167595, 2015.

RED HAT, INC. Linux containers compared to KVM

virtualization.

[56]

(571

http://access.redhat.com/documentation/en—
US/Red_Hat_Enterprise_Linux/7/html/
Resource_Management_and_Linux_Containers_
Guide/sec-Linux_Containers_Compared_to_
KVM_Virtualization.html, 2015.

[58] RISTENPART, T., TROMER, E., SHACHAM, H., AND
SAVAGE, S. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In ACM
Conference on Computer and Communications Security (CCS)

(2009), pp. 199-212.

ROEDEL, J. SVM: Keep intercepting task switching with NPT
enabled. KVM mailing list,
http://thread.gmane.org/
gmane.comp.emulators.kvm.devel /80905, 2011.

(591

[60] ROTITHOR, H. Postsilicon validation methodology for
microprocessors. IEEE Design & Test of Computers 17, 4

(2000), 77-88.

[61] SINITSYN, V. Understanding the Jailhouse hypervisor.
LWN.net, http://lwn.net/Articles/578295,2014.

[62] SLAvICIC, S., AND CAMPBELL, B. XP machine freeze.
KVM mailing list, http://comment s.gmane.org/
gmane.comp.emulators.kvm.devel /133956, 2014.

[63] SOUNDARARAIJAN, V., AND ANDERSON, J. M. The impact
of management operations on the virtualized datacenter. In
ACM/IEEE International Symposium on Computer
Architecture (ISCA) (2010), pp. 326-337.

[64] STEINBERG, U., AND KAUER, B. NOVA: a
microhypervisor-based secure virtualization architecture. In
ACM SIGOPS European Conference on Computer Systems
(EuroSys) (2010), pp. 209-222.

[65] SZEFER, J., KELLER, E., LEE, R. B., AND REXFORD, J.
Eliminating the hypervisor attack surface for a more secure

cloud. In ACM Conference on Computer and Communications
Security (CCS) (2011), pp. 401-412.

http://communities.vmware.com/docs/DOC-8970
http://communities.vmware.com/docs/DOC-8970
http://comments.gmane.org/gmane.comp.emulators.kvm.devel/111948
http://comments.gmane.org/gmane.comp.emulators.kvm.devel/111948
http://bugs.launchpad.net/ubuntu/+source/linux/+bug/1330177
http://bugs.launchpad.net/ubuntu/+source/linux/+bug/1330177
http://wiki.qemu.org/QMP
http://access.redhat.com/security/cve/
http://bugzilla.redhat.com/show_bug.cgi?id=1167595
http://bugzilla.redhat.com/show_bug.cgi?id=1167595
http://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_and_Linux_Containers_Guide/sec-Linux_Containers_Compared_to_KVM_Virtualization.html
http://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_and_Linux_Containers_Guide/sec-Linux_Containers_Compared_to_KVM_Virtualization.html
http://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_and_Linux_Containers_Guide/sec-Linux_Containers_Compared_to_KVM_Virtualization.html
http://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_and_Linux_Containers_Guide/sec-Linux_Containers_Compared_to_KVM_Virtualization.html
http://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_and_Linux_Containers_Guide/sec-Linux_Containers_Compared_to_KVM_Virtualization.html
http://thread.gmane.org/gmane.comp.emulators.kvm.devel/80905
http://thread.gmane.org/gmane.comp.emulators.kvm.devel/80905
http://lwn.net/Articles/578295
http://comments.gmane.org/gmane.comp.emulators.kvm.devel/133956
http://comments.gmane.org/gmane.comp.emulators.kvm.devel/133956

[66] THE LINUX KERNEL ORGANIZATION. Kernel bug tracker.
http://bugzilla.kernel.org. Visited: Aug 2014.

[67] UBUNTU BUG TRACKER. Bug 1268906.
https://bugs.launchpad.net/ubuntu/+source/
linux/+bug/1268906.

[68] UBUNTU BUG TRACKER. Bug 924247.
http://bugs.launchpad.net/ubuntu/+source/
gemu-kvm/+bug/924247,.

[69] WEINS, K. Xen bug drives cloud reboot: Survey shows users
undeterred.
http://www.rightscale.com/blog/cloud-
industry-insights/xen-bug-drives-cloud-
reboot-survey-shows—-users—-undeterred, 2014.

[70] WIKIPEDIA. In-target probe. https:
//en.wikipedia.org/wiki/In-target_probe.
Accessed: Aug 2015.

[71] WILHELM, F., AND LUFT, M. Security assessment of
Microsoft Hyper-V. ERNW Newsletter 43, 2014.

[72] WILLIAMSON, A. KVM: x86 emulator: emulate MOVNTDQ.

Linux Kernel Mailing List
http://lkml.org/lkml/2014/7/11/569,2014.
[73] XEN PROJECT. Nested virtualization in Xen.
http://wiki.xenproject.org/wiki/Nested_
Virtualization_in_Xen, 2014.

327

http://bugzilla.kernel.org
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1268906
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1268906
http://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/924247
http://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/924247
http://www.rightscale.com/blog/cloud-industry-insights/xen-bug-drives-cloud-reboot-survey-shows-users-undeterred
http://www.rightscale.com/blog/cloud-industry-insights/xen-bug-drives-cloud-reboot-survey-shows-users-undeterred
http://www.rightscale.com/blog/cloud-industry-insights/xen-bug-drives-cloud-reboot-survey-shows-users-undeterred
https://en.wikipedia.org/wiki/In-target_probe
https://en.wikipedia.org/wiki/In-target_probe
http://lkml.org/lkml/2014/7/11/569
http://wiki.xenproject.org/wiki/Nested_Virtualization_in_Xen
http://wiki.xenproject.org/wiki/Nested_Virtualization_in_Xen

	Introduction
	Virtualization Bugs
	Intel Virtualization Technology
	Testing
	Testing Physical CPUs
	Testing Virtual CPUs

	Results
	Instruction Emulator
	Debug Facilities
	Local APIC
	Model-Specific Registers
	Task-Switch
	Initialization
	Bug Summary and Discussion
	CPU Architecture Flaws
	Other Hypervisors

	Security
	Related Work
	Future Work
	Conclusions

