
Copy-on-Pin: The Missing Piece for Correct Copy-on-Write
David Hildenbrand

Technical University of Munich
Munich, Germany
Red Hat GmbH

Grasbrunn, Germany
hildenbr@in.tum.de
david@redhat.com

Martin Schulz
Technical University of Munich

Munich, Germany
schulzm@in.tum.de

Nadav Amit
VMware Research
Palo Alto, USA

namit@vmware.com

ABSTRACT
Operating systems utilize Copy-on-Write (COW) to conserve mem-
ory and improve performance. During the last two decades, a series
of COW-related bugs—which compromised security, corrupted
memory and degraded performance—was found. The majority of
these bugs are related to page “pinning”, which operating systems
employ to access process memory efficiently and to perform direct
I/O. Unfortunately, the true cause of these bugs is not well under-
stood, resulting in incomplete bug fixes.We show this by: (1) survey-
ing previously reported pinning-related COW bugs; (2) uncovering
new such bugs in Linux, FreeBSD, and NetBSD; and (3) showing that
they occur because the COW logic does not consider page pinnings
correctly, resulting in incorrect behavior (e.g., I/O of stale data). We
then address the underlying problem by deriving when/how shared
pages must be copied and under which conditions pinned pages can
be shared to maintain correctness. Based on this assessment, we in-
troduce the “Copy-on-Pin (COP)” scheme, an extension of the COW
mechanism that handles pinned pages correctly by ensuring pinned
pages and shared pages are mutually exclusive. However, we find
that a naive implementation of this scheme hampers performance
and increases complexity if pages are copied only when strictly
necessary. To compensate, we introduce a relaxed-COP design,
which does not require precise tracking of page sharing, maintains
correctness without increasing complexity, and (while potentially
needlessly copying pages in some corner cases) marginally im-
proves performance. Our relaxed-COP solution has been integrated
into Linux 5.19.

CCS CONCEPTS
• Software and its engineering → Memory management; •
Security and privacy→ Software and application security; • Com-
puter systems organization→ Architectures.

KEYWORDS
COW; copy-on-write; page pinning; page sharing; virtual memory;
fork; memory deduplication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575716

ACM Reference Format:
David Hildenbrand, Martin Schulz, and Nadav Amit. 2023. Copy-on-Pin:
The Missing Piece for Correct Copy-on-Write. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3575693.3575716

1 INTRODUCTION
Copy-on-Write (COW) is an efficient and ubiquitous technique that
Operating System (OS) memory managers use to save memory,
enhance performance and create memory snapshots [13, 16, 33,
46, 49, 52, 68]. Using COW, a memory page can be shared and
mapped multiple times as long as there are no modifications, while
modifications trigger a separate mapping not visible through the
other mappings. To implement this, all shared page mappings are
write-protected, thereby permitting read accesses from the page,
but are set to trap write accesses. When the OS traps a write access
to the page, if the page is still shared, it performs COW-unsharing,
whereby a writable copy of the page is mapped instead of the shared
page (Figure 1). Otherwise, if the page is no longer shared, the OS
write-unprotects the page, i.e., reuses the page without copying it
first.

The most well known use-case of COW is as an optimization
of the POSIX fork() system call (syscall). When a parent process
forks a child process, the OS needs to ensure that future mem-
ory modifications of private mappings—in either the parent or the
child—are not visible to the other process. To do so, the OS can
copy the parent’s memory during fork and map the copy in the
child’s address space, but doing so would cause performance and
memory overheads. Therefore, OSes refrain from copying memory,
and instead use COW to safely share memory between the two
processes.

Despite COW ubiquity, bugs that caused data leaks, memory
corruption and performance degradation were often found in com-
modity OS implementations of COW. Most of these bugs were
caused by wrong interactions between COW and page pinning, an
OS mechanism that prevents memory pages that the OS or I/O
devices need to access directly from moving or being paged-out.
Once a page is pinned, the OS can access the memory through
linear kernel page-table mappings—a privileged memory alias that
is mapped in every address space—and I/O devices can use Direct
Memory Access (DMA) to application buffers.

While page pinning simplifies OS design and improves perfor-
mance, it can interfere with COW operations. The OS and I/O de-
vices access the memory through non-remappable references, which

176

https://doi.org/10.1145/3575693.3575716
https://doi.org/10.1145/3575693.3575716
https://doi.org/10.1145/3575693.3575716
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575716&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

unlike common userspace memory references, cannot be remapped
or write-protected. As remapping and write-protection are required
for COW, OSes need to cautiously handle the interactions between
COW and page pinning. However, until now, these interactions
have not been properly formalized.

To illustrate one possible wrong interaction of COW and page
pinning, consider a scenario in which a page is shared between two
processes, 𝑃1 and 𝑃2. 𝑃2 initiates an I/O write operation, performs
a DMA to read from that page, and shortly after, before the I/O
operation completes, 𝑃2 unmaps the page using munmap(). Then,
when 𝑃1 writes to the page, the OS might wrongly consider the
page not to be shared, as it is only mapped once, and allow 𝑃1 to
“reuse” the page. As a result, writes of 𝑃1 to the page, which should
be private, would potentially propagate to the file through DMA.
This scenario, which is depicted in Figure 2b, resembles a recent
security issue in Linux [21].

This aforementioned issue is not an isolated case. As we survey
OSes, we find a long list of related bugs as well as inconsistent
and faulty fix attempts. Such bugs are not specific to a certain OS
and some of the bugs have never been properly fixed to this day.
Moreover, we analyze the key code sections of several common
OSes for previously unknown bugs, and find correctness issues in
three commodity OSes: security issues in FreeBSD 13.0 and Linux
5.17 and a memory corruption in NetBSD 9.2.

Following our survey, we analyze the possible wrong interactions
between COW and page pinning. We find five fundamental classes
of wrong interactions of COW and page pinning: (1) wrong COW-
sharing, (2) wrong COW-unsharing, (3) missed COW-unsharing,
(4) impossible COW-unsharing and (5) unnecessary copies. Our anal-
ysis leads us to the conclusion that under the assumption of most
OS designs, COW-shared pages and pinned pages must be mutually
exclusive, even if the pinning was used to obtain a non-remappable
read-only reference.

Preventing COW-shared pages from being pinned and prevent-
ing pinned pages from being COW-shared might sound trivial to
implement. Yet, tracking whether a page is pinned or COW-shared
can introduce complexity and overheads. For example, as we detail
in §5, in Linux, tracking whether a page is pinned can consume
1.5% of the system memory due to cache-line alignment considera-
tions, and tracking whether a page is COW-shared was found to
be error-prone. We therefore need to find a simpler way to prevent
pinned pages from being shared.

We build on the insight that to properly handle COW and page
pinning, precise tracking of page sharing and pinning is not nec-
essary. As long as the OS can correctly identify COW-shared and

R/O R/O

P1 P2

Page
Write Fault P1

R/W

P1

Copy

R/O

P2

Page

Figure 1: COW-unsharing on write fault: replacing a COW-
shared page in a private mapping 𝑃1 by a private copy on
write fault.

Write Fault P1
🗲

R/O R/O

P1 P2

Page

R/OR/W

P1 P2

Page

(a) Other page mappings are not considered.

Unmap P2 Write Fault

R/O R/O

P1 PIN

Page

R/O R/O R/O

P2 PINP1

Page

🗲
R/OR/W

P1 PIN

Page

(b) Pinning references derived from other page mappings are not con-
sidered.

Figure 2:Missed COW-unsharing: reusing a page in a private
mapping 𝑃1 even though COW-unsharing is required results
in private modifications through 𝑃1 being observed from
mapping 𝑃2.

pinned pages, it may incorrectly consider other pages as COW-
shared or pinned, and still handle COW and page pinning correctly.
Based on this insight, we design a general scheme for handling
the interactions between COW and page-pinning, which we name
Copy-on-Pin (COP). COP allows the OS developers to tradeoff mem-
ory sharing opportunities for simplicity and relaxed tracking.

Using our general scheme, we design a relaxed COP system for
Linux, which addresses the known issues in recent Linux versions.
Our solution prioritizes simplicity and robustness and introduces
only negligible memory overhead to track page pinning and sharing.
We implement our solution, which was integrated into Linux 5.19.

Although the main motivation of our relaxed COP design is ro-
bustness, we also measure the performance of our relaxed COP
implementation as well as the current and the previous COW im-
plementations in Linux. We show that our relaxed COP solution
performs in common scenarios as well as or better than previous
implementations, as it effectively performs memoization whether
pages may be shared or are not shared, thereby reducing the over-
head of determining whether pages should be copied or reused.

Specifically, we make the following contributions:

• We identify bugs in the way COW is handled in three com-
modity OSes, and show that such bugs are prevalent.

• We analyze the different classes of correctness and perfor-
mance issues that may be caused when COW is used along-
side page pinning.

• We describe the possible design options for the correct han-
dling of COW of pinned pages and introduce the Copy-on-
Pin scheme.

• We design, implement, and upstream a simple and efficient
COP handling scheme for Linux. Our solution resolves COW
problems, does not increase complexity and even improves
COW operation performance.

177

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

2 BACKGROUND
COW is one of the basic techniques that OS memory managers im-
plement to improve system performance. Introduced in TENEX [16]
during the 1960s, COW saves memory and enhance performance
by deferring and potentially avoiding memory copies until memory
is actually written to. COW was originally designed to prevent
executables’ memory duplication, and its use was later extended for
efficient implementations of the fork() syscall [49], for efficient
communication between processes via message-passing [30, 31, 63]
and for memory deduplication [11, 17, 68].

The usefulness and the operation of COW can be exemplified by
the benefit that it provides to the fork() syscall, which creates a
new process by duplicating the calling process (parent) into a new
process (child). The fork operation requires memory to be copied
logically, but duplicating the memory physically is wasteful since
it consumes CPU time and memory and since the child process
might unmap the entire memory shortly after, e.g., by executing a
new program using the exec() syscall. The use of COW can save
time and memory: the OS write-protects memory pages and shares
them between the parent and the child. Only when a memory page
is written to, the OS traps the write operation, copies the original
page content into a new page, and changes the page table entry
(PTE) in the writing process’s page-table to point to the new page,
which is set as writable.

A common optimization that COW mechanisms employ is copy
avoidancewhen a page is no longer shared: COW, if done frequently
and unnecessarily, might introduce significant performance over-
heads, as it requires a page copy operation and invalidation of
the hardware virtual memory translation cache, which is known
as Translation Lookaside Buffer (TLB). Therefore, if a page is no
longer shared, a copy operation can be avoided and instead the page
write-protection can simply be removed. Such a situation occurs,
for instance, if a memory page is shared between a parent and a
child, the child exits, and then the parent writes to the page. To
detect these cases, OSes often track the number of times each page
is mapped, and avoid copying the page if it is only mapped once.

Although the basic COW logic is rather simple, its interaction
with pinned pages, as we show later, is not well understood. Pinned
pages are memory pages that are (or were) mapped to processes,
and cannot be moved or paged-out to allow the OS or I/O devices
to access them directly and irrespective of the active address space.
There are various cases in which pages are pinned, for instance, to
establish shared I/O rings between applications and the OS (I/O-
uring [12]), for direct uncacheable file access (O_DIRECT) and Re-
mote Direct Memory Access (RDMA).

Page pinning is necessary to enable the OS and I/O devices to
access user memory efficiently. When pages are pinned, the OS can
access the pages using OS linear mappings, a static virtual memory
range in which the entire physical memory of the system is mapped.
Accessing memory through the OS linear mapping is faster than
using address-space pointers since (1) the linear mapping is always
mapped and does not require address-space switching; and (2) the
OS linear mappings use huge-pages and therefore using it causes
fewer TLB misses. Beside its performance benefit, page pinning also
simplifies the OS implementation, since it eliminates page-faults in
complicated scenarios.

Similarly, page pinning allows I/O devices to use DMA to access
I/O buffers of applications directly. Without page-pinning, bounce
buffers had to be used for I/O and additional copy operations were
required, which would have slowed down I/O accesses. It might
seem that the use of an I/O Memory Management Unit (IOMMU)
would render page pinning unnecessary; however, most I/O devices
are incapable of safely restarting I/O transactions following an I/O
page-fault [45], and the use of an IOMMU can introduce additional
overhead [9].

When the OS pins a page, it effectively obtains a non-remappable
reference to a page. We distinguish these pinning references from
userspace pointers in application address-spaces, which we define
as remappable references. Note that pinning references are always
instantiated from remappable references (i.e., application mappings)
and have an implicit protection (i.e., read-only/read-write), which
is defined at the time of their instantiation. Read-only protection,
however, is not enforced by the paging mechanism, as the OS linear
mappings are not modified. Moreover, the protection of pinning
references can be different from the protection of the remappable
reference from which they were created.

These characteristics of pinning references violate the basic hid-
den assumption of COW: if a page is pinned, some references of
the page cannot be write-protected and cannot be remapped. In the
next section we will see that this violation is the root-cause of a
variety of bugs.

3 PINNING-RELATED COW PROBLEMS IN
OSES

COW-related bugs can have serious implications on the system
stability, security and performance. At the same time, some of the
bugs are timing- and workload-dependant, and are therefore hard
to identify, reproduce and debug. During our research, we not only
uncover a long list of past pinning-related COW bugs in OSes, but
also identify previously unknown bugs in three commodity OSes,
which emphasizes the significance of the problem.

3.1 Survey of Pinning-related COW Bugs
Over the years a variety of pinning-related COW bugs has been
found in Linux. In 2005, the developers of Linux found that memory
corruption in Linux can occur because of incorrect COW handling
with pinning references [27]. The next year, correctness issues due
to COW arose when the fork() syscall was initiated after memory
was used for RDMA [62]. In 2014, bugs were found when COW-
unsharingwas forced onwrite-protected sharedmemory [28]. Then,
in 2020, Jann Horn revealed a security issue, in which a child pro-
cess could use the vmsplice() syscall to read private modifica-
tions of the parent’s private memory because COW-unsharing was
missed [38].

The fix [59] for this security issue, however, caused new bugs, in-
cluding userspace page-fault handlers that hung because read-only
pinning was treated like write access [70]. The following fix [60]
caused memory corruption [7, 34] and performance degradation [8]
due to excessive page copies when handling write faults.

Other OSes also encountered issues due to COW-related opera-
tions. The developers of FreeBSD, for instance, found in 2009 that
COW-sharing of wired (pinned) pages during fork() has never

178

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

worked correctly [23]. A bug in handling COW that prevented de-
buggers from setting breakpoints correctly on wired pages, was
fixed in 1997 [29], and that fix was found to be insufficient 12 years
later [24].

This long list of bugs, which does not include additional bugs
for brevity, shows that latent and severe COW-related bugs can
lurk for years in OS kernels. In addition, the chaotic nature of the
fixes shows that a full understanding of the problem is missing.
The fixes themselves are also inconsistent, further emphasizing
the confusion about the correct solution. For example, the logic
in Linux that decides whether COW-unsharing is required for an
anonymous page has changed along the years from originally using
the page reference counter to the number of page table mappings
of a page [27] and then back to the reference counter [60]. Some
solutions required applications to explicitly notify the OS which
memory might be pinned if they intend to fork [62]. Yet, in practice
bug reports show that this interface was not used correctly [34].

3.2 Testing and Uncovering COW Bugs
While we review the code of Linux, FreeBSD and NetBSD looking
for pinning-related COW bugs and find such bugs in Linux and
FreeBSD, we also observe that finding such bugs reliably is hard.
This is particularly true, as they frequently involve a lot of code
complexity and only trigger in specific situations.We therefore wish
to identify such problems across OSes more easily, for example, to
prevent adversarial programs from degrading system stability or
leaking secrets, and non-adversarial programs from failing due to
corrupted memory. However, most OS interfaces that rely on page
pinning differ heavily between OSes making an automated or even
semi-automatic approach almost impossible. We, therefore, build
on an indirect method, namely direct file I/O reads and writes via
O_DIRECT, which are supported by most OSes.

Following this idea, we develop three multi-threaded, OS agnos-
tic test cases [4] that use combinations of O_DIRECT, fork and write
faults. Test case 1 and 3 call fork() with concurrent direct file I/O,
while furthermodifying the page that is under DMA; such a scenario
could similarly happen in non-adversarial programs, for example,
when snapshotting a Virtual Machines (VMs) via fork() [10]. Test
case 2 triggers direct file I/O from the child process, while concur-
rently modifying the page that is under DMA from the parent and
the child process; we suspect that only adversarial programs will
trigger this behavior in practice. Table 1 describes our test cases in
more detail.

NetBSD. Test cases 1 and 3 (see Table 1) fail under NetBSD 9.2
causing both memory corruption and resource leakage: in addi-
tion to failure of our test, the in-memory file-system tmpfs runs
out of available memory. Reviewing the code indeed shows that
NetBSD 9.2 might share pinned pages during fork(), regardless of
whether the pages are pinned for read or write. When the pages are
later written, the OS performs COW-unsharing, replacing the map-
pings of the pinned pages with mappings to new page copies. This
leads to memory corruption, as I/O writes are written to a differ-
ent page than the mapped one. In addition, we noticed accounting
mistakes that lead to the resource leakage.

FreeBSD. While none of our test cases (see Table 1) fail under
FreeBSD 13.0, we identify a security issue1 during manual code
inspection, which is similar to the vmsplice() security issue [21] in
Linux. We create a specific test case that uses direct pipe writes [14],
whereby a write() to a pipe will not be buffered in a kernel buffer,
but instead read direct from the source page using page pinning.
Similarly to the vmsplice() security issue, this security issue is the
result of COW-unsharing logic deciding to reuse a COW-shared
page in the parent process on write-access that, although no longer
mapped by the child process, can still be read using a pinning
reference (held by the pipe) by reading from the pipe. This scenario
is depicted in Figure 2b.

The root cause of this issue is that FreeBSD, although it reuses
pages only under very restrictive conditions [49], relies on the num-
ber of mappings to detect page sharing, which does not consider
pinning references from other processes.

Linux. All our test cases (see Table 1) fail under Linux 5.7 and
only Test case 3 fails under Linux 5.17. However, this is not a bug in
the COW logic, but a bug in the O_DIRECT implementation under
Linux, which uses the wrong interface for pinning pages. Pages ref-
erenced via the wrong interface are not identified as pinned during
fork() and will get shared using COW. The Linux community is
actively working on adjusting the O_DIRECT implementation to use
the correct interface.

As discussed in §3.1, the COW logic in Linux 5.17 still suffers
from memory corruptions and performance problems. During our
code inspection, we identified another unfixed instance of the
vmsplice() security issue [21]: in case a page gets remapped into
a process from the swapcache on write access, the ordinary (fixed)
write-fault handler is bypassed and the wrong COW logic will reuse
a page in the parent process during a write-fault instead of creating
a private copy, even though the page is still pinned by a child pro-
cess. The root cause for this issue is an inconsistent and incorrect
COW logic.

4 COW CORRECTNESS WITH PAGE PINNING
The logic behind COW is often perceived as simple: the OS can
share identical private memory pages by mapping them as read-
only; when a write-access is trapped, the OS replaces the read-only
mapped page by a writable copy. This simple approach, however,
always results in a copy, even if the original page is not shared,
causing an unnecessary copy, resulting in performance overheads
(see Figure 3). As an optimization, OSes usually try to avoid such
copy operations by reusing pages if they are no longer shared.

However, allowing COW logic to reuse pages unwittingly might
violate correctness. As COW is a transparent optimization, the use of
COW by the OS should not affect application execution, excluding
timing and memory consumption. Specifically, when pages are
COW-shared, for instance following a fork() syscall invocation,
write operations through private mappings of one process—the
parent or the child—must not be observable by the other process.
Consequently, a page must be copied and cannot be reused if a page
is shared. Otherwise, as depicted in Figure 2a, reusing the page can
result in data leakage or memory corruption.
1We reported this security issue to the maintainers and they are looking into the
problem.

179

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Our generic test cases for testing COW and page pinning via O_DIRECT read()/write() in combination with fork() and
write accesses.

Case Description Checked Symptom
1 Trigger write() from Part A of a page. Concurrently fork a child and modify Part B of

the page in the parent and Part A in the child.
Wrong file content after write().

2 Fork a child and trigger a write() from Part A of a page in the child. Concurrently
modify Part B of the page in the child and Part A in the parent.

Wrong file content after write().

3 Trigger read() to Part A of a page. Concurrently fork a child and then modify Part B of
the page in the parent.

Wrong page content after read().

Write Fault

R/O

P

Page Page

R/W

P

Copy

Figure 3: Unnecessary copy: during a write-fault on mapping
𝑃 , the mapped page is replaced by a copy instead of reusing
the read-only physical page that is not shared.

Sharing
🗲

R/W R/W

P1 PIN

Page

R/O R/W R/O

PIN P2P1

Page

Figure 4: Wrong COW-sharing: sharing a writable pinned
page that is associated with mapping 𝑃1 causes private modi-
fications to be observed from mapping 𝑃2.

COW Correctness Without Pinning. COW can be described as
an invariant that is maintained for private mappings. We define
private mappings as mappings of pages whose initial content is
identical, but whose updates must not be visible through other
private mappings. Note that this definition encapsulates both POSIX
private anonymous mappings and deduplicated memory. For a
given physical page frame 𝑓 , we denote 𝑃 𝑓

𝑅𝑂
and 𝑃

𝑓

𝑅𝑊
as sets of

read-only and writable private mappings, respectively, which map
the page-frame. We define 𝑃 as their union: 𝑃 𝑓 = 𝑃

𝑓

𝑅𝑊
∪ 𝑃

𝑓

𝑅𝑂
.

To maintain correctness by preventing “missed COW-unsharing”
as depicted in Figure 2a, any COW mechanism must therefore
maintain the following invariant for each physical page frame,
which indicates that, if there is any private writable mapping, it
must be a single exclusive mapping:

|𝑃 𝑓

𝑅𝑊
| > 0 → |𝑃 𝑓 | = 1 (1)

However, this invariant is over-simplistic as it does not consider
the interaction between COW and some other prevalent OS mech-
anisms. First, in POSIX-compliant OSes, file-backed memory may
also be accessed through shared mappings, and memory modifica-
tions through private mappings should not be observable through
shared mappings either. As a side-note, the specifications do allow
for write operations that are performed through shared mappings
to be visible through private mappings [58].

Second, the OS might hold caching references to the page and
use them later to create new mappings of the page or access the
page. Memory modifications using private mappings should still
not be observable through any other mapping or through caching
references. For example, a file-backed memory page can be cached
in the page-cache and later read using the read() syscall. Writes
to private mappings that mapped the page should not be reflected
in the read buffer.

Third, considering page mappings only as “direct” architectural
virtual-memory mappings—i.e., pages that are mapped in the page-
tables and accessible using pointers—is inadequate. Page mappings
can also be logical-only references of pages that are not mapped
architecturally in the page-tables. Specifically, when a page is about
to be swapped out, the OS might replace the page-table entry that
maps a page with a special page-table entry that references a swap
slot instead. At this point, the pagemight still reside in memory. The
definition of mappings should therefore include all page mappings,
including logical-only references.

Based on these OS characteristics we update the previous invari-
ant. We denote for the page frame 𝑓 the set of shared mappings
as 𝑆 𝑓 , and the set of caching references as 𝐶 𝑓 . This leads us to the
following refined invariant:

|𝑃 𝑓

𝑅𝑊
| > 0 → |𝑃 𝑓 | + |𝑆 𝑓 | + |𝐶 𝑓 | = 1 (2)

This logic actually resembles the logic that Linux used in the past to
evaluate whether COW-unsharing of write-protected anonymous
pages is needed.

COW Correctness with Page Pinning. So far we did not consider
the impact of page pinning. Applications can implicitly pin pages
using various interfaces, for instance by performing direct I/O
operations (e.g., using O_DIRECT) that use DMA. By pinning the
page we say that the application obtained a pinning reference to
the page, which is non-remappable. Pinning references must orig-
inate from shared or private mappings, but they may outlive the
mapping from which they were derived, for instance, following
the munmap() syscall. The protection of pinning references can-
not be easily changed because it is enforced by software (without
synchronization) and not by hardware.

As COW is a transparent optimization, it cannot change the
semantics of page pinnings. Write operations through pinning ref-
erences must be observable through the memory mapping they
are associated with and vice versa. Write operations through pin-
ning references that originated from private mappings must not
be observable through other mappings. Mishandling pinned pages

180

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

🗲
R/O R/O

P PIN

Page
Write Fault

R/W

P

Copy

R/O

PIN

Page

(a) A copy would not be required.

Write Fault P1

R/W

🗲
R/O R/O R/O

PIN P2P1

Page

P1

R/O

PIN P2

PageCopy

R/O

(b) Another mapping 𝑃2 would have to be updated instead.

Figure 5: Wrong COW-unsharing: a wrong decision
whether/how COW should be unshared can result in
a mapping getting disconnected from its derived page
pinnings.

Write Fault P1Pinning P2 🗲
R/O R/O R/O

PIN1 P2P1

Page

R/O R/O R/O R/O

PIN1P1 PIN2P2

Page ?

Figure 6: Impossible COW-unsharing: having multiple map-
pings and pinning the page in eachmapping without copying
the page, cannot be resolved following a write-fault: the map-
ping reference and the pinned reference point to different
pages.

can lead to various problems, which we classify in the following
categories:

(1) Missed COW-unsharing (Figure 2b): an application causes
a COW-shared page to be pinned and then unmaps the
mapping that was used for pinning, for instance, using the
munmap() syscall. When the page is written, if the OS con-
siders the page as unshared since it is only mapped once,
it would not unshare COW. As a result, writes to the page
would be visible through the pinning reference, thereby leak-
ing data. If the pinning reference can be used to write to the
page, memory corruption is possible. Examples for such bugs
include the recent vmsplice() vulnerability of Linux [38]
and the bug that we found in FreeBSD (see §3.2).

(2) Wrong COW-sharing (Figure 4): an application causes a page
to be pinned. The page is then shared by write-protecting the
mapping. However, the pinning reference cannot be write-
protected. If the page is written through the pinning refer-
ence, the modifications, which should be private, are visible
through all the mappings. This can cause memory corruption
and leak information into other processes. Such a scenario
was possible in Linux [62], when RDMA pinned a page for
write-access and then invoked fork() to create a child pro-
cess.

(3) Wrong COW-unsharing (Figure 5): a page mapping and an
pinning reference that should point to the same page, point
to two different pages. Such a scenario might occur since
an OS might not be able to determine whether a page is
shared, and as a result might copy the page, considering an
unnecessary copy operation to be benign. Later, when the
application writes to the page, the modifications will not
be visible through the pinning reference. A similar scenario
might occur when the page is shared. The OS, noticing that
the page is shared, might copy the page upon write without
updating the pinning reference that cannot be remapped.
Both of the scenarios might result in memory corruption.
Such bugs were found in Linux [27, 34], and we found a
similar bug in NetBSD as well (see §3.2).

(4) Impossible COW-unsharing (Figure 6): a situation whereby
COW-unsharing cannot be resolved without removing map-
pings or pinning references. The OS might allow multiple
COW-shared mappings to be pinned if the corresponding
pinning references are read-only. However, once a write op-
eration occurs, the OS has no valid course of action: it cannot
copy the page, since this would prevent modifications from
being visible through the matching pinning references, and
it cannot allow the page to keep being shared, since this
would make modifications of the page to be visible through
the other mapping. The only possible resolution for such
situations is removing mappings or the pinning references,
which requires aborting processes in practice.

Considering page pinning, we first define an invariant to pre-
vent “wrong COW-unsharing”, and to ensure OS references that
originated from certain mappings point to the same page frame as
the mapping. We denote by 𝑃𝐼𝑁 𝑓 the set of mappings from which
pinning references to page frame 𝑓 were established.

∀𝑓 .∀𝑓 ′.∀𝑝 ∈ 𝑃 𝑓 .∀𝑖 ∈ 𝑃𝐼𝑁 𝑓 ′ .𝑝 = 𝑖 → 𝑓 = 𝑓 ′ (3)
Next, we define invariants to prevent the “wrong COW-sharing”

and “missed COW-unsharing” scenarios. As soon as there is one
writable reference (mapping or pinning reference) from a private
mapping, no additional references from other mappings may exist.
We denote the subset of private mappings in 𝑃𝐼𝑁 𝑓 as 𝑃𝑃𝐼𝑁 𝑓 and
the shared ones as 𝑆𝑃𝐼𝑁 𝑓 . We denote by 𝑃𝑃𝐼𝑁

𝑓

𝑅𝑊
the subset of

mappings in 𝑃𝑃𝐼𝑁 𝑓 that were used to create a writable pinning ref-
erence. Note that, since a pinning reference can outlive the mapping
it was created from, 𝑃𝐼𝑁 𝑓 , 𝑃𝑃𝐼𝑁 𝑓 , and 𝑃𝑃𝐼𝑁 𝑓

𝑅𝑊
might include torn

down page mappings, for instance mappings that were unmapped
using the munmap() syscall. In other words, 𝑃 𝑓 is not a superset
of 𝑃𝑃𝐼𝑁 𝑓 . We extend the invariant 2 to regard pinned pages, i.e.,
pinning references, as follows:

|𝑃 𝑓

𝑅𝑊
∪ 𝑃𝑃𝐼𝑁

𝑓

𝑅𝑊
| > 0 →

|𝑃 𝑓 ∪ 𝑃𝑃𝐼𝑁 𝑓 | + |𝑆 𝑓 ∪ 𝑆𝑃𝐼𝑁 𝑓 | + |𝐶 𝑓 | = 1
(4)

To prevent the “impossible COW” issue, we must not have a page
frame that is referenced by a pinning reference that originated
from a private mapping, and any pinning reference that originated
from another mapping. We, therefore, must not have a page pinned
through a private mapping, while it is also pinned through another

181

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

mapping. This leads us to a slightly more generic invariant:

|𝑃𝑃𝐼𝑁 𝑓 | > 0 → |𝑃𝐼𝑁 𝑓 | = 1 (5)

Practical COW. While these invariants are correct in theory, they
do not provide a practical solution for OSes. Consider a situation in
which a page has multiple private mappings and a single pinning
reference that is associated with one of the mappings. Based on
the aforementioned invariants, such a scenario is valid, however in
practice cannot be handled. When the OS traps a write operation
through the mapping that is associated with the pinning reference,
the OS must copy the page, but at the same time cannot remap the
mapping that triggered the fault to maintain invariant 5.

Instead, the OS has to remap all the other mappings. However,
remapping the other mappings is impractical since it is complicated
to implement and might introduce significant latency since the
number of the mappings is unbounded.

Therefore, a practical solution requires that sharing and pinning
of private mappings would be mutually exclusive. To be more pre-
cise: (1) if a page with a private mapping is shared—COW-shared,
mapped through shared mapping, or has a caching reference—it
would not be pinned; and (2) if a page has a private pinning refer-
ence, it would not be shared in any of the aforementioned manners.
A page with no private mapping is allowed, of course, to be shared
and pinned.

We would note that since POSIX leaves the impact of memory
modifications through shared mappings unspecified, some relax-
ation of this solution is possible. Specifically, a page with a shared
pinning reference can have a private mapping without causing
correctness issues. For simplicity, we disregard optimizations that
rely on this unspecified scenario.

5 DESIGN
Proper support for page pinning in an OS that uses COW requires
modifications of three components: page pinning, COW-sharing de-
cisions (e.g., during fork()) and COW-unsharing decisions (when
a write operation to a write-protected page is trapped). Based on
the condition that pinned and COW-shared pages must be mutually
exclusive, we introduce the Copy-on-Pin (COP) scheme, which ex-
tends the COW scheme to properly handle pinned pages. In general,
handling COP should be performed in the following manner:

(1) Pinning: Whenever a COW-shared page is pinned, for either
read or write, the page should be unshared.

(2) Sharing: Pages cannot be COW-shared if they are pinned.
(3) Prevent COW on pinned pages: Pinned pages should not be

replaced with a copy: they would never be COW-shared
and replacing them with a copy would lead to a “wrong
COW-unsharing” scenario.

The main challenge in supporting page pinning with COW is
in determining (1) whether a page is COW-shared and therefore
should be copied on write or pinning; and (2) whether a page is
pinned and therefore cannot be COW-shared and cannot get re-
placed by a copy. It might appear easy to accurately track and
determine whether each page is COW-shared or pinned. Deter-
mining certain types of sharing—by shared mappings and caching
references—is indeed simple, as tracking this information does not

require exact counters and the OS already tracks it for other pur-
poses. However, tracking COW-sharing or pinning references is
not always possible or performant. As we show in §5.2, Linux in-
tentionally does not track this information accurately, and adding
such tracking was deemed unacceptable. We focus on this type of
sharing in the rest of our analysis.

There are various reasons that can lead OSes developers to de-
cide not to track accurately whether pages are pinned or shared.
Tracking whether each page is pinned can increase memory con-
sumption by page metadata dramatically. Tracking whether each
page is COW-shared is complex, fragile andmight require acquiring
locks, which would introduce unacceptable overheads. One major
reason for this limitation is that OSes did not need to determine
accurately whether pages are COW-shared before page pinning
was introduced. Without page pinning, the OSes can do best effort
checks whether a page is COW-shared, and if the checks cannot
determine whether it is COW-shared, the OSes can simply replace
the page with no negative impact on correctness. In contrast, if
the OS considers a pinned page as COW-shared, this would lead to
“wrong COW-unsharing”.

Our insight is that accurate tracking of page pinning and shar-
ing is actually not required for proper support of COW with page
pinning. In fact, there is no single correct solution for COW mech-
anisms to support page pinning, but a variety of solutions that
introduce different trade-offs. Next, we describe the possible design
options, and based on these options, we choose the solution that is
suitable for Linux (§5.2).

5.1 Design Options
In general, correct support for page pinning with COW requires
two primitives: (1) a check whether a page might be COW-shared,
which we denote as𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒); and (2) a check whether
a page might be pinned, which we denote as𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒).
Two invariants must be maintained for pages that might need to
be copied on write:

(1) If a page is COW-shared:
𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒) → 𝑡𝑟𝑢𝑒 ∧
𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) → 𝑓 𝑎𝑙𝑠𝑒 .

(2) If a page is pinned:
𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒) → 𝑓 𝑎𝑙𝑠𝑒 ∧
𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) → 𝑡𝑟𝑢𝑒 .

In other words, the OS needs to be able to identify COW-shared
and pinned pages reliably and ensure they are mutually exclusive.
By definition, using𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 and𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 primitives
is more restrictive than determining precisely whether a page is
pinned or shared, as consequently using these primitives ensures
correct detection of pinned and shared pages.

Once a page is pinned or a write-access to a write-protected
page is trapped, the OS needs to decide whether the page should
be reused (i.e., write-unprotected on write-accesses) or should be
copied (COW-unshared). Each case should be properly treated: (1)
COW-shared pages must be copied; (2) pinned pages (i.e., not COW-
shared) must be reused; (3) unshared and unpinned pages can be
either copied or reused. For performance and memory savings, it is
better to reuse pages when possible. Accordingly, on pinning event

182

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

or trapped write-access, the OS would COW-unshare the page if
𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒) is true, and otherwise would reuse the page.

COW-sharing of pinned pages, for instance during fork() can-
not be performed, as we show in §4. The OS therefore checks
whether the page is pinned using the𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) prim-
itive if the page might be pinned, and prevents COW-sharing of
these pages.

Various implementations of𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) are possible.
As one example, the OS can decide to consider all pages as poten-
tially pinned, which would effectively prevent any COW sharing.
On the other extreme, the OS can track the exact number of times
each page is pinned and consider a page as potentially pinned if
the counter is non-zero; doing so would allow the OS to maxi-
mize the page sharing opportunities, but would increase memory
consumption.

Similarly,𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒) can be implemented in different
ways. One option, if page pinning is tracked accurately, is to con-
sider any non-pinned page as potentially shared. This would be
correct, but would lead to unnecessary copying of each page that is
not pinned. At the other extreme, the OS can track all the page map-
pings and provide an accurate answer whether the page is shared;
this would minimize the number of COW-unsharing operations
at the cost of additional complexity and performance overheads.
Another option is for the OS to consider a page as potentially COW-
shared only if it is known not to be pinned and some lightweight
best-effort checks cannot determine that it is not shared.

5.2 Linux Design
Following the analysis of the design options, we consider how
they can be applied in Linux. We first explore whether Linux
already provides proper primitives of 𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) and
𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒).

As it turns out, Linux provides a suitable basis for the𝑚𝑎𝑦𝑏𝑒_-
𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) primitive, which can be used to determine whether a
page might be pinned. Indeed, Linux does not track the exact num-
ber of times that each page is pinned, since adding such a counter
would have required an increase in the size of each page’s metadata
(struct page). As the metadata is aligned to the cache-line size in
most architectures (64 bytes) for performance reasons, adding such
counter would have doubled the page metadata memory consump-
tion and reduced the amount of available memory by 1.5%. Linux
tracks pinning imprecisely, by adding a large constant (1024) to the
page’s reference counter when a page is pinned, and reducing the
counter by that constant when the page is unpinned.

This check might indicate pages that are COW-shared by many
mappings (>1024) as pinned, which violates our requirement that
𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) → 𝑓 𝑎𝑙𝑠𝑒 for COW-shared pages. Conceptu-
ally, we could consider a page as potentially pinned only if it is
not also considered as potentially COW-shared, as we describe
next. However, as long as 𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒) is not used for
making COW-unsharing and pinning decisions, but only for COW-
sharing decisions, there will not be correctness issues (for example
“missed unsharing” as shown in Figure 2b). Consequently, we use the
𝑚𝑎𝑦𝑏𝑒_𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒) primitive for making COW-unsharing and
pinning decisions and restrict the use of the𝑚𝑎𝑦𝑏𝑒_𝑝𝑖𝑛𝑛𝑒𝑑 (𝑝𝑎𝑔𝑒)
primitive to COW-sharing decisions.

Tracking whether a page is potentially COW-shared requires a
new tracking scheme. Recent Linux version, which our implemen-
tation is based on, did not provide reliable primitives to determine
whether a page is potentially COW-shared. Linux 5.8 and prior ver-
sions attempted to definitively determine whether a page is COW-
shared based on number of mapping references (𝑚𝑎𝑝_𝑐𝑜𝑢𝑛𝑡 and
𝑠𝑤𝑎𝑝_𝑐𝑜𝑢𝑛𝑡). This approach, however, introduced many correct-
ness and security bugs [20–22] as well as performance overheads.
It was consequently abandoned.

Due to the complexity of determining whether a page is COW-
shared, Linux versions 5.9–5.18 use a simpler, yet inaccurate, logic
to determine whether a page is COW-shared. However, this logic
might effectively consider pinned pages as COW-shared, which
can lead to memory corruptions. For example, if the lock of the
page metadata is contended, a pinned page might be mistakenly
considered as COW-shared.

To address this issue and to properly implement the 𝑚𝑎𝑦𝑏𝑒_-
𝑠ℎ𝑎𝑟𝑒𝑑 (𝑝𝑎𝑔𝑒) primitive, we introduce the Relaxed Copy-on-Pin
(RelCOP) design. In RelCOP, we add to each page’s metadata a
single 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag, which can be implemented without expanding
the metadata size. When the flag is set it indicates that the page is
guaranteed not to be COW-shared. We set the exclusive flag when
a private page is allocated and following COW-unsharing events.
We clear the flag when the page is COW-shared. This flag can
therefore always provide—as required for our approach—a correct
answer whether a page is potentially COW-shared without false-
positive indications that a pinned page is COW-shared. To avoid
unnecessary copies when deciding whether COW-unsharing is
needed, if the exclusive flag is clear, we perform several lightweight
checks to see if it is possible to quickly determine that the page is
not COW-shared. If the page is determined not to be COW-shared,
we set the exclusive flag.

Unlike Linux 5.8—the last version that attempted to determine
accurately whether a page is COW-shared—our solution might
cause unnecessary copies once a page was COW-shared and the
𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag was cleared. Such operations do not affect correct-
ness, but might introduce small performance and transient memory
overheads in certain cases. In practice, our solution performs better
than Linux 5.8, as checking whether COW-unsharing is needed
is faster. More importantly, our solution is more robust and has
lower complexity, since it does not require accurately determining
whether a page is COW-shared.

6 IMPLEMENTATION
We implemented Copy-on-Pin (COP) in Linux via our Relaxed
Copy-on-Pin (RelCOP) design, as described in §5.2, for anonymous
memory. We focus on anonymous memory because it is the most
common one, and based on bug reports and our tests, the most
problematic one. Our implementation comprises 747 added and
340 removed lines of code; it was integrated into upstream Linux
5.19 [61].

Exclusivity Detection. We implement the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag using a
page flag in the page metadata, reusing an existing flag that does
not have semantics for anonymous pages. We adjust COW and
page pinning code to handle the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag as described in §5.2.

183

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Prior to our work, the COW handling of anonymous memory
used inconsistent and incorrect logic to determine whether COW-
unsharing is needed. In some cases, the presence of more than a
single page mapping was used to determine that the page is shared
and should be copied. In others, the page was copied if the page
had additional references, i.e., the reference counter was greater
than one. We change the COW logic to determine that a page is
exclusive, i.e., not shared, based on the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag. As mentioned
above, this flag is always set for pinned pages, for which COW-
unsharing must be avoided. If the flag is clear, we use the absence of
additional references as definitive and robust indication that a page
is not shared, and the page is reused without copying. Otherwise,
the page may be shared. We perform COW-unsharing in this case,
as we have already confirmed that the page is not pinned and,
therefore, copying and remapping the page would not cause any
correctness issues.

Exclusivity Detection Refinements. In practice, even pages that
have additional references, and, therefore, their reference counter
is greater than one, are frequently not shared, and copying these
pages might introduce performance overheads. To avoid unnec-
essary copies, if the page has additional references we attempt to
release these page references and recheck its reference counter.
Specifically, we try to release the page from the swapcache and
the Least Recently Used (LRU) cache, which is used to add pages
efficiently to the LRU lists that are used for memory reclamation
decisions.

Handling Swapping and Page Migration. If a page is swapped
out or migrated, it is no longer associated with a page, and the OS
cannot determine whether it is exclusive based on the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag
residing in the page metadata. Losing track of the flag value would
lead to unnecessary copies and can cause performance overheads.
Therefore, we retain the flag value in such cases.

When pages are swapped out or migrated, Linux stores an indi-
rect mapping—“swap entry” or “migration entry” respectively—in
the non-present Page Table Entrys (PTEs) that mapped the page.
The format of these entries needs to be revised to reflect the value
of the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag. As one example, we introduce a new flag in
the “swap entry” to store the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag while a page is swapped
out. When fork() duplicates an indirect mapping, it updates swap
entries and migration entries to indicate the page is not exclusive,
similarly to the way the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 bit is cleared for present pages.

Handling Read-only Pinning. When pinning a COW-shared page
for read-only accesses, it needs to first be copied for correctness.
Treating read-only pinning as awrite event is semantically incorrect

R/O R/O

P1 P2

Page
Unsharing P1

R/O

P1

Copy

R/O

P2

Page

Figure 7:COW-unsharing before read-only pinning: replacing
a COW-shared page in a privatemapping 𝑃1 by a private copy.
In contrast to COW-unsharing during a write fault, the copy
is mapped read-only.

and introduces various bugs that are not related to COW-unsharing
logic [70]. Instead, we implement COW-unsharing during read-
only pinning by leaving the copy mapped read-only, depicted in
Figure 7. We reuse the write-fault handling code that handles traps
onwrite-protected pages in order to performCOW-unsharingwhen
necessary, before the page is pinned. Invoking this code is done
by introducing a new flag to distinguish COW and read-only COP
events.

Handling Transparent Huge Pages. Linux supports Transparent
Huge Pages (THPs) [19], which are large pages (e.g., 2MiB) that
Linux maps transparently and opportunistically into a process ad-
dress spaces instead of small (base) pages. As applications are un-
aware when large pages are used instead of base pages, they might
remove part of the mapping, e.g., using the munmap() syscall. In
such a case, Linux would first break the large page into base pages
and replace the mapping of the large page with mappings of the
base pages that the large page is comprised from.We need to ensure
that the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag of each base page metadata is correct when
the page is broken. Therefore, as long as a THP is mapped as a large
page, we store the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 flag in the metadata of the large page.
If and when a THP is broken up, we propagate this flag into the
metadata of each base page that the large page is comprised of.

7 EVALUATION
While the motivation for our work and the major benefit of Relaxed
Copy-on-Pin (RelCOP) is in providing simple, robust and correct
COW handling scheme for pinned pages, we also wish that our
solution would be performant and would not introduce noticeable
overheads. We therefore compare the performance and overheads
of our solution to those of the two prior COW handling schemes
of Linux.

The first COW handling scheme, which we name Precise Copy-
on-Pin (PreCOP), was used in Linux 5.8 and prior versions. This
scheme handles page pinning by determining precisely whether
a page is shared based on the number of page mappings. As we
discussed in §5.2, this approach has been abandoned as it was found
to be complex and error-prone.

The second scheme, which we name No Copy-on-Pin (NoCOP),
is used in Linux 5.9–5.18. This scheme simplifies the COW logic
by relaxing the conditions that lead to COW-unsharing. As we
describe in §5.2, this scheme is incorrect. Nevertheless, we present
the performance of NoCOP , as this scheme is the base for our imple-
mentation and has been used in Linux deployments. We compare
these schemes to our scheme, RelCOP , which was integrated in
Linux 5.19.

In order to ensure that our evaluation only measures the impact
of the different COW schemes on the performance, and is not
affected by other unrelated code changes of Linux, we use a single
Linux kernel version—5.18—as a base for three custom Linux kernels
that only differ in the way that they handle COW. By reverting
COW-related patches we create kernels that use PreCOP andNoCOP
schemes; by applying our patches we create a kernel that uses
the RelCOP scheme. Note that we revert some patches to create a
NoCOP kernel, because Linux 5.18 already contains some of our
preparatory changes. Table 2 shows the custom kernels that were
used for evaluation.

184

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

2 4 6 8 10 12
0
2
4
6
8

#Child Processes

Th
ro
ug

hp
ut

[G
iB
/s
]

a) anon-cow-seq

PreCOP NoCOP RelCOP

0.8

1

1.2

Sp
ee
du

p

2 4 6 8 10 12
0

0.5

1

1.5

2

#Child Processes

Th
ro
ug

hp
ut

[G
iB
/s
]

b) anon-cow-rand

0.8

0.9

1

1.1

Sp
ee
du

p

Figure 8: Average throughput when running the vm-scalability COW-handling benchmarks with THP enabled 50 times for the
given number of child processes. The line shows the speedup of RelCOP relative to PreCOP .

Table 2: Custom Linux kernels we evaluate based on Linux
5.18, re-creating the COW and page pinning logic for anony-
mous memory in different Linux versions.

Approach Linux Known inaccuracy Precise Source
PreCOP 5.8 Some bugs Yes [1]
NoCOP 5.9–5.18 Yes No [3]
RelCOP 5.19-rc1 No No [2]

We perform our measurements on a server with a 12-core Intel
Xeon Gold 6126 CPU, 2.6GHz and 96GiB of DDR4 memory. We run
Fedora 36 with custom Linux kernels compiled using a Linux kernel
configuration based on 5.18.5-200.fc36.x86_64, which is supplied
by Fedora. We disable Intel Turbo Boost and Hyper-Threading to
improve reproducibility. Further, we configure disk-based swap
space to enable the swapcache, as required for one of the micro-
benchmarks.

7.1 Micro-Benchmarks
We run micro-benchmarks to measure the direct impact of the
different COW handling schemes on execution time.

Impossible Reuse. We measure the performance of COW-unsha-
ring events using the anon-cow-seq and anon-cow-rand micro-
benchmarks. These benchmarks are part of the vm-scalability test-
suite [5] and are intended to measure the performance of COW
handling of writes to anonymousmemory. The benchmarks allocate
private memory in a parent process and then fork several child
processes, and as a result the OS performs COW-sharing of the
allocated memory. The child processes write to the private memory
sequentially and randomly respectively, thereby triggering page
faults as the shared pages are write-protected. The kernel then
checks whether the pages are shared, and since they are indeed
shared, unshares them.

We run the benchmarks with different number of child pro-
cesses (2–12), and with THP both enabled and disabled. We set the
benchmark unit size to 1GiB per child process, and run each
benchmark 50 times. The average memory bandwidth result as
measured by the benchmark is shown in Figure 8. Based on the
results we calculate the speedup of RelCOP relatively to PreCOP ,
and present it as a line that corresponds to the secondary y-axis.

While the benchmark results without THP are practically identi-
cal in all schemes (data not shown), the results of the experiment
with THP show that RelCOP is faster by up to 23% than PreCOP
in the sequential access benchmark and by 6% in the random ac-
cess benchmark. Accurate checks whether a THP is shared in the
PreCOP scheme require to acquire a lock and access metadata of
multiple base-pages, thereby inducing notable overhead. NoCOP
avoids this overhead by using a simple check to determine that
the page is potentially shared based on its reference count, and
therefore should be copied. RelCOP performance is effectively the
same as NoCOP’s and better than PreCOP’s, while being correct,
simpler and more robust than the alternatives.

Possible Reuse. The main limitation of our solution, RelCOP , is
that it can in certain corner cases copy pages unnecessarily, and as
a result introduce performance and momentary memory overheads.
To check the impact and extend of this limitation, we run multiple
benchmarks that might cause RelCOP to unnecessarily copy pages
that are in fact not shared. In these benchmarks, page reuse is
always safe.

We run the STREAM [48] memory bandwidth benchmark, and
configure it to run on a single core and access 1GiB. Wemakeminor
changes to the benchmark in order to initiate, before each iteration,
different types of memory management operations that might mis-
lead RelCOP into considering pages that are not shared as shared.
These operations can cause short-term sharing of pages and/or
elevate page reference counters that RelCOP uses as a secondary
indicator whether pages are shared. The different operations that
are carried are shown in Table 3.

In addition, to stress the COW systems when used alongside
Kernel Samepage Merging (KSM)—Linux’s memory deduplication
engine—we make further modifications to the benchmark. The im-
pact of KSM on the COW page-sharing checks is the greatest when
pages are scanned for duplicates most frequently. In contrast, ac-
tual memory deduplication introduces performance overheads that
would dominate the results. We therefore change the benchmark
to set different content on each page and configure KSM to scan
pages for duplicates as frequently as possible.

We report the average memory bandwidth and the average num-
ber of page copies per second in the write-fault handler. Note that
these page copies are unwarranted as pages are not COW-shared
in these tests. The results are depicted in Figure 9.

185

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: Operations we initiate before each iteration in our modified STREAM benchmark that all result in the pages getting
mapped read-only, triggering the write-fault handler on next write-access.

Operation Description COW-shared OS References
mprotect Write-protect+unprotect the pages using mprotect(). No unlikely
swap Swapout pages via madvise(); read all pages. No swapcache

mprotect+ksm Operation “mprotect”; trigger KSM run. No KSM
fork Fork a child process and wait; let the child exit. Briefly unlikely

swap+fork Operation “swap” follow by action “fork”. Briefly swapcache
fork+ksm Operation “fork”; trigger a KSM run. Briefly KSM

mprotect swap mprotect+ksm fork swap+fork fork+ksm
0

2

4

6 5.6
4.9 4.9

5.6
4.9 4.9

5.6

3.6
4.4

5.7

3.6
4.4

5.6 5.6 5
5.6

4.9 4.3

Ba
nd

w
id
th

[G
iB
/s
]

mprotect swap mprotect+ksm fork swap+fork fork+ksm
0

100

200

300

0 0 0 0 0 00

279

59
0

282

61
0 0 0 0 0

62

#P
ag
e
Co

pi
es

[k
/s
]

PreCOP NoCOP RelCOP

Figure 9: Average memory bandwidth and average number of page copies per second in the write-fault handler when running
our modified STREAM benchmark, whereby we initiate different operations (Table 3) before each iteration.

As shown, RelCOP copies pages unnecessarily only in 1 of the
6 tests. In contrast, NoCOP unnecessarily copies pages in 4 of the
6 test, and in two of the tests—“swap” and “swap+fork”—copies
essentially each one of the pages, although they are not shared.
NoCOP copies pages unnecessarily quite often since it cannot de-
termine whether a page is shared using its simplified checks, and
therefore copies pages as a fallback. RelCOP not only addresses
NoCOP correctness issues, but also, by tracking page exclusivity,
eliminates most of the unnecessary page copies.

The memory bandwidth results, which reflect the benchmark
performance, further show the benefits of RelCOP . RelCOP performs
better than NoCOP in the two tests that swap out pages by up to
57%. RelCOP performance is as good or better than PreCOP in all
tests excluding “fork+ksm”, in which RelCOP creates unnecessary
page copies.

In general, the maximum memory bandwidth in the KSM cases
is lower compared to the other cases. KSM walks process page
tables and scans pages to identify duplicates while the benchmark
is running. As this concurrent KSM activity consumes memory
bandwidth, it reduces the memory bandwidth that is available for
the benchmark.

Unnecessary page copy operations during COW-unsharing re-
duce the memory bandwidth that is measured by the benchmark.
Copying each page requires to retrieve the target page from the
memory to the caches, and to perform several synchronization
and accounting operations. During the time of these operations
the benchmark does not run. As a result, the benchmark reports
considerably lower memory bandwidth when unnecessary page

copy operations are carried by the page fault handler, for instance
when NoCOP is used in the “swap” and the “swap+fork” cases.

Interestingly, RelCOP performance is higher by 14% than the
performance of PreCOP when memory is first swapped out. Our
analysis shows that RelCOP performs better since it does not remove
pages frequently from the swapcache—as done by PreCOP—which
can introduce significant overheads. Unlike RelCOP , PreCOP cannot
easily realize whether a page that resides in the swapcache is shared
and needs to perform expensive synchronization to check whether
the page is shared or should be removed from the swapcache. In
contrast, RelCOP only removes pages from the swapcache when
the 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 marker is not set.

Write-fault Performance without COW. While our solution is in-
tended to improve COW-related operations, it also affects other
operations, and specifically write page-faults in which no COW-
unsharing is necessary. Usually, regardless of the COW handling
scheme, such page-faults do not trigger page copying. However,
determining whether COW-unsharing is necessary is done differ-
ently in each scheme. For write page-faults that can be quickly
resolved by the OS, i.e., without expensive I/O operations, memory
copies or TLB shootdowns, the overhead of determining whether
COW-unsharing is needed can be observable.

We therefore evaluate the overhead of write page-fault handling
when no COW-sharing takes place. We allocate 1GiB of memory,
initialize the memory with zeroes, and then map the pages write-
protected into the page table such that the next write access will
trigger a write-fault to map the page writable again. We then per-
form one write operation to each page. We ensure that the OS does

186

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

DisabledEnabled
0
10
20
30
40 36.6335.94 36.6535.98 36.735.98

THP

Ba
se

Ra
te

a) intrate

PreCOP

NoCOP

RelCOP

DisabledEnabled
0
10
20
30
40 37.4537.76 37.4937.81 37.4837.76

THP

Ba
se

Ra
te

b) fprate

Figure 10: Final results when performing a reportable execution of the intrate and fprate benchmarks part of SPEC CPU 2017
suite with 12 copies and three iterations. We run the benchmarks once with THP enabled and once with THP disabled.

not perform unnecessary-COW operations during the tests. By
measuring the overall time of the test, we calculate the average
duration of a single write access—including write fault overhead.

Our results show that write-fault handling in RelCOP (1092 ns)
is 0.8% faster than NoCOP (1101 ns) and 2.2% faster than PreCOP
(1116 ns). These results highlight an additional benefit of RelCOP :
it effectively acts as a memoization mechanism to save whether
a page may be shared or is not shared. As a result, the page-fault
handler can handle write-faults that do not require COW-unsharing
faster.

7.2 Macro-Benchmarks
We assume that the COW handling scheme would not have observ-
able performance impact on common workloads. First, common
workloads do not make heavy use of fork() such that a differing
COWstrategywould notably affect overall application performance.
Second, the usage of KSM is usually restricted to very specific appli-
cations, such as VMs, and the extreme KSM scanning as configured
in the micro-benchmark is not used in practice due to the notable
scanning overhead. Third, swapping already negatively affects per-
formance of common workloads, for example, due to expensive
disk access. Common workloads that are performance-sensitive
neither rely on swapping nor KSM. Consequently, we expect that
the differences revealed by our micro-benchmarks do not affect
common workloads.

To validate our assumption, we run the SPECrate2017 [56] test-
suite, which executes a variety of different workloads derived from
real user applications. The output of this benchmark is a “base
rate” score, which correlates with the benchmark throughput; a
higher “base rate” corresponds to a better benchmark result. We
run two reportable benchmark executions with 12 copies and three
iterations, once with THP enabled and once with THP disabled.
The results are depicted in Figure 10. As expected, the fprate and
intrate results are practically identical: the difference between
the lowest and the highest “base rate” is in all cases at most 0.7, cor-
responding to at most 0.2% of the lowest “base rate”. Consequently,
the SPECrate2017 results do not indicate a practical performance
impact or benefit for any approach.

7.3 Discussion
As our evaluation shows, unnecessary copies in the RelCOP ap-
proach are in general not an issue once optimizing for the important
cases (e.g., swapcache) and do not affect performance of common
applications in any noticeable way. RelCOP effectively acts as a

memoization mechanism to whether a page may be shared or is not
shared, which avoids unnecessary copies in the important cases and
achieves the fastest write-fault performance in the common case.
Excluding one corner case, RelCOP performs the same or better
than PreCOP due to more efficient write-fault handling.

8 RELATEDWORKS
COW is used in various domains (e.g., storage), yet resource pinning
appears to be unique to memory management. We therefore limit
our related work survey to memory management.

Interestingly, the COW algorithm itself does not receive a lot
of attention. Fábrega et al. formulate the correctness of COW, in
the context of the Mach micro-kernel [30]. Their work is specific
to Mach and does not consider pinning. Accetta et al. describe that
COW implementation in Mach [6]. Cranor et al. similarly describe
COW in UVM (Universal Virtual Machine) [26], and compare it to
the traditional BSD VM [49].

COW Optimizations. On-Demand-Fork uses COW for the dedu-
plicate page-tables during fork to reduce application invocation
latency [73] . Similarly, sharing of data structures during fork() is
proposed by Mitosis [25].

CoWLight offloads COW-unsharing to the hardware for reduced
copy latency [54]; the hardware has access to a list of free pages
and the OS uses a newly define architectural PTE flag to perform
hardware assisted COW. Coverage-based Copy-on-Write (CCoW)
optimizes COW for write-intensive workloads, by initiating COW-
unsharing of adjacent pages during page faults, which reduces the
number of page faults [36].

Seshadri et al. [55] use page overlays to extend the concept of
COW to Overlay-on-Write: instead of unsharing COW on write
access, the original page remains mapped and modifications are
recorded in a page overlay. The Difference Engine [35] proposed a
similar software solution for memory deduplication via patches to
shared pages.

Memory Deduplication. COW is commonly used for memory
deduplication. Memory deduplication for virtual machines was
first described for VMware ESX [68] and later similarly adapted
under Linux via KSM [11] and under Windows [17]. It is an active
research field, with a focus on making memory deduplication more
efficient [18, 32, 35, 40, 42, 50, 51, 66, 72] and identifying security
implications [17, 43, 47, 64, 65, 69].

Additional COW Use Cases. WINNIE [41] uses COW for perfor-
mant fuzzing of Windows applications by providing an efficient

187

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

fork() implementation under Windows. Xu et al. [71] describe
a new snapshot() syscall that employs COW for efficient cap-
turing of the state of a process, to revert to that state later for
fuzzing purposes. Bittau [15] similarly introduces checkpoint()
and resume() syscalls that rely on COW for saving and restoring
process state to avoiding expensive fork().

Several studies use COW for fast live-cloning of VMs, for ex-
ample, for cloning short-lived honeypots [44, 57, 67]. z-READ [53]
remaps user pages by COW-sharing pagecache pages during the
read() syscall, avoiding copying page content. Chu [39] describes
zero-copy for TCP in Solaris using COW when writing data to a
socket: the source page is marked COW-shared in the mapping
such that it gets replaced by a copy on modification attempts before
the transmission is done.

9 CONCLUSIONS
The interaction of COW with page pinning has not been well-
defined for a long time, resulting in various OS bugs that affected
security, correctness and performance. In this work, we analyzed
these bugs and the desired behavior of COW mechanisms. Based
on this analysis we showed how COW can be performed correctly
without introducing performance overheads or complexity. Our
solution is robust and has been included in Linux 5.19, resolving a
variety of bugs that were lurking for years.

While our work addresses the interaction of page pinning and
COW, the need for page pinning requires further thought. Page
pinning has undesired side effects, such as memory fragmentation
and increased memory consumption, but it is currently considered a
“necessary evil” as it provides considerable performance gains over
the alternatives. The question whether a performant alternative to
page pinning can be developed remains open.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers and shepherd as
well as Dr. David Alan Gilbert for their valuable feedback. Further,
we would like to thank the Linux community—most notably Linus
Torvalds, Peter Xu, John Hubbard, Jason Gunthorpe, Hugh Dickins,
Vlastimil Babka and Matthew Wilcox—for their previous work on
Linux’ handling of COWwith page pinning and for their invaluable
feedback and guidance. Last but not least, we would like to sin-
cerely thank Andrea Arcangeli for all his prior work on discovering
pinning-related COW bugs in Linux and development of possible
fixes, including the idea of not treating read-only pinning as a write
event.

A ARTIFACT APPENDIX
A.1 Abstract
The artifacts include patches for three custom Linux kernels based
on Linux 5.18, one of these kernels corresponding to our RelCOP
implementation. In addition, the artifacts contain our modified
STREAM benchmark, a copy of the vm-scalability benchmark, a
simple write-fault-duration benchmark, a SPECrate2017 config file,
some helper scripts, and a copy of the O_DIRECT+fork test cases.

A.2 Artifact Check-List (Meta-Information)
• Program: Threemicro-benchmarks; SPECrate2017 asmacro-bench-
mark.

• Compilation: GCC as included in Fedora 36.
• Run-time environment: Fedora 36.
• Hardware: x86-64 server with at least 12 cores and 32GiB of RAM.
• Execution: Sole user with sudo (root) permissions; multiple reboots
required.

• Metrics: The vm-scalability benchmark measures throughput. The
modified STREAMbenchmarkmeasuresmemory bandwidth and the
number of page copies per second. The write-fault-duration bench-
mark measures the duration in ns. The output of the SPECrate2017
benchmark is a “base rate”.

• Output: CSV files.
• Experiments: Three custom Linux kernels are evaluated; reboots

are required to switch between these kernels. OS scripts are provided
to run the benchmarks.

• How much disk space required (approximately)?: 5GiB, ex-
cluding SPECrate2017 (∼50GiB)

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours.

• How much time is needed to complete experiments (approx-
imately)?: 5 hours, excluding SPECrate2017 runtime (∼24 hours
per kernel).

• Publicly available?: Yes, our implementation was included into
upstream Linux and the artifacts are publicly available.

• Code licenses: The Linux Kernel is provided under the terms of
the GNU General Public License version 2 only (GPL-2.0).

• Archived: 10.5281/zenodo.7333207 [37]

A.3 Description
A.3.1 How to Access. The artifacts are available on Gitlab (https:
//gitlab.com/cop_paper/ae) and include a README.md file with
further information on installation, configuration and evaluation.

A.3.2 Hardware Dependencies. x86-64 machine with root access,
≥ 12 cores and ≥ 32GiB of memory.

A.3.3 Software Dependencies. Some Linux packages have to be
installed from the distributions’ package manager in order to com-
pile the benchmarks and the custom Linux kernels. The included
install.sh script will perform this step automatically.

A.3.4 Data Sets. The experiments include running the proprietary
SPECrate2017 benchmark, part of SPEC CPU 2017; this benchmark
is not included. Note that alternative benchmarks might be used
to show that the different approaches have no effect on the perfor-
mance of common workloads.

A.4 Installation
We only provide a short overview of installation and configuration
steps. More information can be found in the included README.md
file.

A.4.1 Installing Custom Linux Kernels. The kernels folder con-
tains an install.sh script that will install package dependencies,
download Linux 5.18, compile the three custom Linux kernel and
install them automatically.

188

https://gitlab.com/cop_paper/ae
https://gitlab.com/cop_paper/ae

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

Table 4: Possible relationship between the custom Linux ker-
nels and the boot indexes.

Index Kernel Name Approach
0 5.18.0-relcop RelCOP
1 5.18.0-nocop NoCOP
2 5.18.0-precop PreCOP

A.4.2 Installing SPECrate2017. Please follow the official SPEC CPU
2017 instructions to install SPEC CPU 2017, and to check whether
the installation is working as expected.

A.4.3 SWAP Configuration. The modified STREAM benchmark
requires configuration of proper disk-based swap space, otherwise
the swapcache is not used as intended.

A.5 Switching Between Custom Linux Kernels
In order to run the experiments under the three custom Linux
kernels, Linux has to be re-configured to boot with a specific kernel.
This can either be achieved by selecting the desired Linux kernel
in the boot manager, or by using the grubby command.

See the README.md file for details on how to switch between
Linux kernels. The relationship between the custom Linux kernels
and the boot indexes can be observed via the grubby command and
might be as shown in Table 4.

A.6 Basic Test
Being able to successfully boot Linux with the custom Linux kernel
that corresponds to our RelCOP implementation is sufficient to
show that the kernel was installed correctly and that the basics are
working—Linux makes heavy use of fork() and, therefore, COW
during boot.

Boot the installed RelCOP custom Linux kernel (5.18.0-relcop)
as described in A.5 and validate that the correct kernel was booted:
$ uname −a
5.18.0−relcop

A.7 Experiment Workflow
The overall experiment workflow is as follows:

(1) Compile and install the three custom Linux kernels.
(2) Install SPEC CPU 2017.
(3) Boot into RelCOP kernel and run benchmark experiments.
(4) Boot into NoCOP kernel and run benchmark experiments.
(5) Boot into PreCOP kernel and run benchmark experiments.

The benchmark experiments for each custom Linux kernel are as
follows:

(1) Run vm-scalability benchmark experiment.
(2) Run modified STREAM benchmark experiment.
(3) Run write-fault-duration benchmark experiment.
(4) Run reportable SPECrate2017 experiment.

A.8 Evaluation and Expected Results
The README.md file contains details on how to prepare, how to
run the benchmarks, and which CSV files are generated. We only
shortly summarize the evaluation in this section.

A.8.1 Vm-Scalability Benchmark. To run the two anon-cow vm-
scalability benchmarks with THP enabled and with THP disabled,
use the run-vm-scalability.sh script in the benchmarks direc-
tory. Use the helper script eval-vm-scalability.sh to compute
the average throughput across all benchmark iterations, and to
output the results to new CSV files.

Figure 8 depicts our results from this experiment with THP en-
abled. With THP disabled, the results should be practically identical.
Note that the speedup of RelCOP relative to PreCOP has to be cal-
culated manually.

A.8.2 Modified STREAMBenchmark. To run themodified STREAM
benchmark that executes selected actions before each benchmark
iteration, use the run-stream.sh script in the benchmarks direc-
tory. Use the helper script eval-stream.sh to compute the average
memory bandwidth and average number of page copies per second
across all benchmark iterations, and to output the results to new
CSV files.

The results from this experiment are expected to be similar to
the results depicted in Figure 9.

A.8.3 Write-Fault-Duration Benchmark. To run the write-fault-du-
ration benchmark, use the run-write-fault-duration.sh script
in the benchmarks directory. To compute the average duration
across all benchmark iterations and to output the results to a new
CSV file, use the helper script eval-write-fault-duration.sh.

The results from this experiment are expected to be similar to
the results presented in §7.1.

A.8.4 SPECrate2017 Benchmark. Follow the SPEC CPU 2017 in-
stallation instructions and our instructions to properly setup and
configure the SPECrate2017 experiment in the README.md file.

Use the run-spec.sh script in the benchmarks directory to run
the intrate and fprate benchmarks with 12 tasks and 3 iterations,
once with THP enabled and once with THP disabled. As discussed
in §7.2 and depicted in Figure 10, the benchmark results for each of
the custom Linux kernels should be practically identical.

REFERENCES
[1] 2022. Soruce code of custom Linux kernel based on 5.18 that implements the

COW logic from 5.8. https://gitlab.com/cop_paper/linux/-/tree/precop.
[2] 2022. Source code of custom Linux kernel based on 5.18 that implements the

COW logic from 5.19. https://gitlab.com/cop_paper/linux/-/tree/relcop.
[3] 2022. Source code of custom Linux kernel based on 5.18 that implements the

COW logic from 5.9. https://gitlab.com/cop_paper/linux/-/tree/nocop.
[4] 2022. Source code of generic O_DIRECT and fork() test cases. https://gitlab.com

/cop_paper/o_direct_fork_tests/-/tree/cop_paper.
[5] 2022. Source code of vm-scalability benchmark. https://git.kernel.org/pub/scm/l

inux/kernel/git/wfg/vm-scalability.git.
[6] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,

Avadis Tevanian, Michael Young, and Robert Baron Mike Accetta. 1986. Mach: A
New Kernel Foundation for UNIX Development. In Proceedings of the Summer
1986 Usenix Conference. USENIX Association, San Diego, CA, USA, 93–112.

[7] Nadav Amit. 2020. mm/userfaultfd: fix memory corruption due to writeprotect.
https://lore.kernel.org/all/20201219043006.2206347-1-namit@vmware.com/.

[8] Nadav Amit. 2021. mm: unnecessary COW phenomenon. https://lore.kernel.or
g/all/FFA0057D-1A17-4DF4-9550-A8CDEE9E0CE0@gmail.com/.

[9] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU: Strategies
for mitigating the IOTLB bottleneck. In International Symposium on Computer
Architecture. Springer, Springer-Verlag, Berlin, Heidelberg, 256–274. https:
//doi.org/10.1007/978-3-642-24322-6_22

[10] Andrea Arcangeli. 2014. Re: [Qemu-devel] [PATCH 00/17] RFC: userfault v2.
https://lists.gnu.org/archive/html/qemu-devel/2014-11/msg03088.html.

189

https://gitlab.com/cop_paper/linux/-/tree/precop
https://gitlab.com/cop_paper/linux/-/tree/relcop
https://gitlab.com/cop_paper/linux/-/tree/nocop
https://gitlab.com/cop_paper/o_direct_fork_tests/-/tree/cop_paper
https://gitlab.com/cop_paper/o_direct_fork_tests/-/tree/cop_paper
https://git.kernel.org/pub/scm/linux/kernel/git/wfg/vm-scalability.git
https://git.kernel.org/pub/scm/linux/kernel/git/wfg/vm-scalability.git
https://lore.kernel.org/all/20201219043006.2206347-1-namit@vmware.com/
https://lore.kernel.org/all/FFA0057D-1A17-4DF4-9550-A8CDEE9E0CE0@gmail.com/
https://lore.kernel.org/all/FFA0057D-1A17-4DF4-9550-A8CDEE9E0CE0@gmail.com/
https://doi.org/10.1007/978-3-642-24322-6_22
https://doi.org/10.1007/978-3-642-24322-6_22
https://lists.gnu.org/archive/html/qemu-devel/2014-11/msg03088.html

Copy-on-Pin: The Missing Piece for Correct Copy-on-Write ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[11] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density
by using KSM. In Ottawa Linux Symposium (OLS). Montreal, Quebec, Canada,
19–28.

[12] Jens Axboe. 2019. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.
[13] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe. 2019.

A fork() in the road. InACMWorkshop on Hot Topics in Operating Systems (HOTOS).
Association for Computing Machinery, New York, NY, USA, 14–22. https:
//doi.org/10.1145/3317550.3321435

[14] A. H. Bell-Thomas. 2020. Interprocess Communication in FreeBSD 11: Perfor-
mance Analysis. https://arxiv.org/abs/2008.02145. https://doi.org/10.48550/ARX
IV.2008.02145

[15] Andrea Bittau. 2009. Toward Least-Privilege Isolation for Software. Ph. D. Disser-
tation. University College London.

[16] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, and Raymond S. Tomlin-
son. 1972. TENEX, a Paged Time Sharing System for the PDP - 10. Communica-
tions of the ACM (CACM) 15, 3 (1972), 135–143. https://doi.org/10.1145/361268.3
61271

[17] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In
IEEE Symposium on Security and Privacy (SP). IEEE, 987–1004. https://doi.org/10
.1109/SP.2016.63

[18] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen, Haiyang Pan, and Yun-
gang Bao. 2014. CMD: Classification-based Memory Deduplication through
page access characteristics. In ACM/USENIX International Conference on Virtual
Execution Environments (VEE). Association for Computing Machinery, New York,
NY, USA, 65–76. https://doi.org/10.1145/2576195.2576204

[19] Jonathan Corbet. 2011. Transparent huge pages in 2.6.38. https://lwn.net/Articl
es/423584/.

[20] The MITRE Corporation. 2020. CVE-2020-29368. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2020-29368.

[21] The MITRE Corporation. 2020. CVE-2020-29374. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2020-29374.

[22] The MITRE Corporation. 2021. CVE-2021-39802. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2021-39802.

[23] Alan Cox. 2009. Correct an error in vm_fault_copy_entry(). https://github.com/f
reebsd/freebsd-src/commit/e4ed417a355e2cfcb7ee5b9caa6be9c2ed239fae.

[24] Alax Cox. 2009. Simplify both the invocation and the implementation of
vm_fault() for wiring. https://github.com/f reebsd/f reebsd-src/commit/2
db65ab46e54af2f56b711c9049e5321bab88a17.

[25] Alan Cox and Juan Navarro. 2001. Mitosis: A High Performance, Scalable Virtual
Memory System. Technical Report. Rice University, Houston, Texas, USA.

[26] Charles D. Cranor and Gurudatta M. Parulkar. 1999. The UVM virtual memory
system. In USENIX Annual Technical Conference (ATC). USENIX Association, San
Diego, CA, USA.

[27] Hugh Dickins. 2005. can_share_swap_page: use page_mapcount. https://lore.ker
nel.org/all/Pine.LNX.4.61.0506062058090.5000@goblin.wat.veritas.com/.

[28] Hugh Dickins. 2014. mm: get_user_pages(write,force) refuse to COW in shared
areas. https://lore.kernel.org/all/alpine.LSU.2.11.1404040120110.6880@eggly.anv
ils/.

[29] John Dyson. 1997. Fix the gdb executable modify problem. https://github.com/f
reebsd/freebsd-src/commit/a04c970a7aa272333bfa26014f64f461006db115.

[30] Francisco Javier Thayer Fábrega, Francisco Javier, and Joshua D. Guttman. 1995.
Copy on Write. (1995).

[31] Robert Fitzgerald and Richard F. Rashid. 1986. The Integration of Virtual Memory
Management and Interprocess Communication in Accent. ACM Transactions on
Computer Systems (TOCS) 4, 2 (1986), 147–177. https://doi.org/10.1145/214419.2
14422

[32] Anshuj Garg, Debadatta Mishra, and Purushottam Kulkarni. 2017. Catalyst:
GPU-assisted rapid memory deduplication in virtualization environments. In
ACM/USENIX International Conference on Virtual Execution Environments (VEE).
Association for Computing Machinery, New York, NY, USA, 44–59. https:
//doi.org/10.1145/3050748.3050760

[33] Google. 2021. Android Developer Documentation: Overview ofmemory manage-
ment. https://developer.android.com/topic/performance/memory-overview.

[34] Jason Gunthorpe. 2020. Re: mm: Trial do_wp_page() simplification. https:
//lore.kernel.org/all/20200914143829.GA1424636@nvidia.com/.

[35] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,
George Varghese, GeoffreyM. Voelker, and Amin Vahdat. 2010. Difference engine:
Harnessing memory redundancy in virtual machines. Communications of the
ACM (CACM) 53, 10 (2010), 85–93. https://doi.org/10.1145/1831407.1831429

[36] Minjong Ha and Sang Hoon Kim. 2022. CCoW: Optimizing Copy-on-Write
Considering the Spatial Locality in Workloads. Electronics (Switzerland) 11, 3
(2022). https://doi.org/10.3390/electronics11030461

[37] David Hildenbrand, Martin Schulz, and Nadav Amit. 2022. Software artifacts
for the paper "Copy-on-Pin: The Missing Piece for Correct Copy-on-Write". https:
//doi.org/10.5281/zenodo.7333207

[38] Jann Horn. 2020. Linux: CoW can wrongly grant write access. https://bugs.chr
omium.org/p/project-zero/issues/detail?id=2045.

[39] Hsiao Keng Jerry Chu. 1996. Zero-copy TCP in Solaris. In USENIX Annual
Technical Conference (ATC). USENIX Association, San Diego, CA, USA.

[40] Shuaijie Jia, ChentaoWu, and Jie Li. 2017. Loc-K: A spatial locality-based memory
deduplication schemewith prediction on k-step locations. In IASTED International
Conference on Parallel and Distributed Computing and Systems (ICPDCS). IEEE,
310–317. https://doi.org/10.1109/ICPADS.2017.00049

[41] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo
Kim. 2021. WINNIE : Fuzzing Windows Applications with Harness Synthesis
and Fast Cloning. In Proceedings 2021 Network and Distributed System Security
Symposium. https://doi.org/10.14722/ndss.2021.24334

[42] Sung Hun Kim, Jinkyu Jeong, and Joonwon Lee. 2014. Selective memory dedupli-
cation for cost efficiency in mobile smart devices. IEEE Transactions on Consumer
Electronics 60, 2 (2014), 276–284. https://doi.org/10.1109/TCE.2014.6852004

[43] Taehun Kim, Taehyun Kim, and Youngjoo Shin. 2021. Breaking kaslr using
memory deduplication in virtualized environments. Electronics (Switzerland) 10,
17 (2021). https://doi.org/10.3390/electronics10172174

[44] Denis Lavrov, Véronique Blanchet, Shaoning Pang,MuyangHe, andAbdolhossein
Sarrafzadeh. 2017. COR-Honeypot: Copy-On-Risk, virtual machine as Honeypot
in the cloud. In IEEE International Conference on Cloud Computing (CLOUD). IEEE,
908–912. https://doi.org/10.1109/CLOUD.2016.0134

[45] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran
Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017. Page Fault Support
for Network Controllers. ACM SIGARCH Computer Architecture News (CAN) 45,
1 (2017), 449–466. https://doi.org/10.1145/3093337.3037710

[46] Liang Li, Guoren Wang, Gang Wu, Ye Yuan, Lei Chen, and Xiang Lian. 2021.
A Comparative Study of Consistent Snapshot Algorithms for Main-Memory
Database Systems. IEEE Transactions on Knowledge and Data Engineering 33, 2
(2021), 316–330. https://doi.org/10.1109/TKDE.2019.2930987

[47] Jens Lindemann and Mathias Fischer. 2019. On the detection of applications in
co-resident virtual machines via a memory deduplication side-channel. ACM
SIGAPP Applied Computing Review 18, 4 (2019), 31–46. https://doi.org/10.1145/
3307624.3307628

[48] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (1995), 19–25.

[49] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
1996. The Design and Implementation of the 4.4BSD Operating System. Addison
Wesley Longman Publishing Co., Inc., USA.

[50] Konrad Miller, Fabian Franz, Thorsten Groeninger, Marc Rittinghaus, Marius
Hillenbrand, and Frank Bellosa. 2012. KSM++: Using I/O-based hints to make
memory-deduplication scanners more efficient. In Proceedings of the ASPLOS
Workshop on Runtime Environments, Systems, Layering and Virtualized Environ-
ments (RESoLVE’12).

[51] Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and Frank
Bellosa. 2013. XLH: More effective memory deduplication scanners through cross-
layer hints. In USENIX Annual Technical Conference (ATC). USENIX Association,
San Jose, CA, USA, 279–290.

[52] Jiwoong Park, Yunjae Lee, Heon Young Yeom, and Yongseok Son. 2020. Memory
efficient fork-based checkpointing mechanism for in-memory database systems.
In ACM Symposium on Applied Computing (SAC). IEEE, 420–427. https://doi.org/
10.1145/3341105.3375782

[53] Jiwoong Park, Cheolgi Min, Heon Young Yeom, and Yongseok Son. 2019. Z-
READ: Towards efficient and transparent zero-copy read. In IEEE International
Conference on Cloud Computing (CLOUD). IEEE, 367–371. https://doi.org/10.110
9/CLOUD.2019.00066

[54] T. Santhosh Kumar, Debadatta Mishra, Biswabandan Panda, and Nayan Desh-
mukh. 2019. CoWLight: Hardware assisted copy-on-write fault handling for se-
cure deduplication. In Proceedings of the 8th International Workshop on Hardware
and Architectural Support for Security and Privacy. Association for Computing
Machinery, New York, NY, USA, 8 pages. https://doi.org/10.1145/3337167.3337170

[55] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip B.
Gibbons, Michael A. Kozuch, Todd C. Mowry, and Trishul Chilimbi. 2015. Page
overlays: An enhanced virtual memory framework to enable fine-grainedmemory
management. In ACM/IEEE International Symposium on Computer Architecture
(ISCA). Association for Computing Machinery, New York, NY, USA, 79–91. https:
//doi.org/10.1145/2749469.2750379

[56] Standard Performance Evaluation Corporation. 2020. SPEC CPU 2017. https:
//www.spec.org/cpu2017/.

[57] Yifeng Sun, Yingwei Luo, Xiaolin Wang, Zhenlin Wang, Binbin Zhang, Haogang
Chen, and Xiaoming Li. 2009. Fast live cloning of virtual machine based on xen.
In 2009 11th IEEE International Conference on High Performance Computing and
Communications. IEEE, 392–399. https://doi.org/10.1109/HPCC.2009.97

[58] The Open Group. 2008. Base Specifications Issue 7. IEEE Std 1003.1-2008.
[59] Linus Torvalds. 2020. gup: document and work around "COW can break either

way" issue. https://patchwork.kernel.org/project/linux-mm/patch/20210421225
750.60668-1-surenb@google.com/.

[60] Linus Torvalds. 2020. mm: do_wp_page() simplification. https://git.kernel.org/p
ub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09854ba94c6a.

190

https://kernel.dk/io_uring.pdf
https://doi.org/10.1145/3317550.3321435
https://doi.org/10.1145/3317550.3321435
https://arxiv.org/abs/2008.02145
https://doi.org/10.48550/ARXIV.2008.02145
https://doi.org/10.48550/ARXIV.2008.02145
https://doi.org/10.1145/361268.361271
https://doi.org/10.1145/361268.361271
https://doi.org/10.1109/SP.2016.63
https://doi.org/10.1109/SP.2016.63
https://doi.org/10.1145/2576195.2576204
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29368
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29368
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29374
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29374
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39802
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39802
https://github.com/freebsd/freebsd-src/commit/e4ed417a355e2cfcb7ee5b9caa6be9c2ed239fae
https://github.com/freebsd/freebsd-src/commit/e4ed417a355e2cfcb7ee5b9caa6be9c2ed239fae
https://github.com/freebsd/freebsd-src/commit/2db65ab46e54af2f56b711c9049e5321bab88a17
https://github.com/freebsd/freebsd-src/commit/2db65ab46e54af2f56b711c9049e5321bab88a17
https://lore.kernel.org/all/Pine.LNX.4.61.0506062058090.5000@goblin.wat.veritas.com/
https://lore.kernel.org/all/Pine.LNX.4.61.0506062058090.5000@goblin.wat.veritas.com/
https://lore.kernel.org/all/alpine.LSU.2.11.1404040120110.6880@eggly.anvils/
https://lore.kernel.org/all/alpine.LSU.2.11.1404040120110.6880@eggly.anvils/
https://github.com/freebsd/freebsd-src/commit/a04c970a7aa272333bfa26014f64f461006db115
https://github.com/freebsd/freebsd-src/commit/a04c970a7aa272333bfa26014f64f461006db115
https://doi.org/10.1145/214419.214422
https://doi.org/10.1145/214419.214422
https://doi.org/10.1145/3050748.3050760
https://doi.org/10.1145/3050748.3050760
https://developer.android.com/topic/performance/memory-overview
https://lore.kernel.org/all/20200914143829.GA1424636@nvidia.com/
https://lore.kernel.org/all/20200914143829.GA1424636@nvidia.com/
https://doi.org/10.1145/1831407.1831429
https://doi.org/10.3390/electronics11030461
https://doi.org/10.5281/zenodo.7333207
https://doi.org/10.5281/zenodo.7333207
https://bugs.chromium.org/p/project-zero/issues/detail?id=2045
https://bugs.chromium.org/p/project-zero/issues/detail?id=2045
https://doi.org/10.1109/ICPADS.2017.00049
https://doi.org/10.14722/ndss.2021.24334
https://doi.org/10.1109/TCE.2014.6852004
https://doi.org/10.3390/electronics10172174
https://doi.org/10.1109/CLOUD.2016.0134
https://doi.org/10.1145/3093337.3037710
https://doi.org/10.1109/TKDE.2019.2930987
https://doi.org/10.1145/3307624.3307628
https://doi.org/10.1145/3307624.3307628
https://doi.org/10.1145/3341105.3375782
https://doi.org/10.1145/3341105.3375782
https://doi.org/10.1109/CLOUD.2019.00066
https://doi.org/10.1109/CLOUD.2019.00066
https://doi.org/10.1145/3337167.3337170
https://doi.org/10.1145/2749469.2750379
https://doi.org/10.1145/2749469.2750379
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://doi.org/10.1109/HPCC.2009.97
https://patchwork.kernel.org/project/linux-mm/patch/20210421225750.60668-1-surenb@google.com/
https://patchwork.kernel.org/project/linux-mm/patch/20210421225750.60668-1-surenb@google.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09854ba94c6a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09854ba94c6a

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada David Hildenbrand, Martin Schulz, and Nadav Amit

[61] Linus Torvalds. 2022. Merge tag ’mm-stable-2022-05-25’ of git://git.kernel.org/p
ub/scm/linux/kernel/git/akpm/mm. https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=98931dd95fd4.

[62] Michael S. Tsirkin. 2006. madvise MADV_DONTFORK/MADV_DOFORK. https:
//lore.kernel.org/all/20060213233517.GG13603@mellanox.co.il/.

[63] Shin-Yuan -Y Tzou and David P. Anderson. 1991. The performance of message-
passing using restricted virtual memory remapping. Software: Practice and Expe-
rience 21, 3 (1991), 251–267. https://doi.org/10.1002/spe.4380210303

[64] Fernando Vano-Garcia and Hector Marco-Gisbert. 2020. An Info-Leak Resistant
Kernel Randomization for Virtualized Systems. IEEE Access 8 (2020), 161612–
161629. https://doi.org/10.1109/ACCESS.2020.3019774

[65] Fernando Vano-Garcia and Hector Marco-Gisbert. 2020. KASLR-MT: Kernel
Address Space Layout Randomization for Multi-Tenant cloud systems. J. Parallel
and Distrib. Comput. 137 (2020), 77–90. https://doi.org/10.1016/j.jpdc.2019.11.008

[66] T. Veni and S. Mary Saira Bhanu. 2014. MDedup++: Exploiting Temporal and Spa-
tial Page-Sharing Behaviors for Memory Deduplication Enhancement. Comput.
J. 59, 3 (2014), 353–370. https://doi.org/10.1093/comjnl/bxu149

[67] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. 2005. Scalability, fidelity, and
containment in the Potemkin virtual honeyfarm. ACM SIGOPS Operating Systems
Review (OSR) 39, 5 (2005), 148–162. https://doi.org/10.1145/1095810.1095825

[68] Carl A. Waldspurger. 2002. Memory Resource Management in VMware ESX
Server. ACM SIGOPS Operating Systems Review (OSR) 36, Special Issue (2002),

181–194. https://doi.org/10.1145/844128.844146
[69] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. 2013. Security im-

plications of memory deduplication in a virtualized environment. In IEEE In-
ternational Conference on Dependable Systems & Networks (DSN). IEEE, 1–12.
https://doi.org/10.1109/DSN.2013.6575349

[70] Peter Xu. 2020. mm/gup: Allow real explicit breaking of COW. https://lore.kerne
l.org/all/20200808223802.11451-1-peterx@redhat.com/.

[71] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
new operating primitives to improve fuzzing performance. In ACM Conference
on Computer and Communications Security (CCS). Association for Computing
Machinery, New York, NY, USA, 2313–2328. https://doi.org/10.1145/3133956.31
34046

[72] Lingjing You, Yongkun Li, Fan Guo, Yinlong Xu, Jinzhong Chen, and Liu Yuan.
2019. LeveragingArrayMapped Tries in KSM for LightweightMemoryDeduplica-
tion. In 2019 IEEE International Conference on Networking, Architecture and Storage,
NAS 2019 - Proceedings. IEEE, 1–8. https://doi.org/10.1109/NAS.2019.8834730

[73] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-demand-fork: A
microsecond fork for memory-intensive and latency-sensitive applications. In
EuroSys 2021 - Proceedings of the 16th European Conference on Computer Systems.
Association for Computing Machinery, New York, NY, USA, 540–555. https:
//doi.org/10.1145/3447786.3456258

Received 2022-07-07; accepted 2022-09-22

191

git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=98931dd95fd4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=98931dd95fd4
https://lore.kernel.org/all/20060213233517.GG13603@mellanox.co.il/
https://lore.kernel.org/all/20060213233517.GG13603@mellanox.co.il/
https://doi.org/10.1002/spe.4380210303
https://doi.org/10.1109/ACCESS.2020.3019774
https://doi.org/10.1016/j.jpdc.2019.11.008
https://doi.org/10.1093/comjnl/bxu149
https://doi.org/10.1145/1095810.1095825
https://doi.org/10.1145/844128.844146
https://doi.org/10.1109/DSN.2013.6575349
https://lore.kernel.org/all/20200808223802.11451-1-peterx@redhat.com/
https://lore.kernel.org/all/20200808223802.11451-1-peterx@redhat.com/
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1109/NAS.2019.8834730
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3447786.3456258

	Abstract
	1 Introduction
	2 Background
	3 Pinning-related COW Problems in OSes
	3.1 Survey of Pinning-related COW Bugs
	3.2 Testing and Uncovering COW Bugs

	4 COW Correctness with Page Pinning
	5 Design
	5.1 Design Options
	5.2 Linux Design

	6 Implementation
	7 Evaluation
	7.1 Micro-Benchmarks
	7.2 Macro-Benchmarks
	7.3 Discussion

	8 Related Works
	9 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Switching Between Custom Linux Kernels
	A.6 Basic Test
	A.7 Experiment Workflow
	A.8 Evaluation and Expected Results

	References

